Introduction to Scientific Computing

Dr Hanno Rein

Last updated: October 12, 2018

1 Computers

A computer is a machine which can perform a set of calculations. The purpose of this course is to give
you the ability to tell the computer which calculation to perform to solve a given problem of scientific
nature.

This section of the course can only give you an extremely limited overview. I encourage you to
read up a bit more on computer architecture, especially if you plan to dive deeper into the subject.

1.1 How computers work

A computer consists of two main components, the memory and the processor. The memory stores
commands and all sorts of data. Memory comes in the form of hard drives, RAM, a L1 caches or
USB sticks. Some of these are fast, others are portable or very cheap. For us, the distinction between
them is not very important. The processor, also called CPU, reads commands from the memory and
executes them. Here are some examples of possible instructions:

e beep

add register a and register b and store the value in register c
e move memory content at address 123 to register a

e skip the next instruction

e go back 10 instructions

We could just write these instructions by hand and enter them one by one into the memory. This
would involve a lot of repetitive work, reading lots of manuals and would take a long time. And indeed,
just 40 years ago, this was the only way to get any programming done. Today, the computers are fast
enough so that we can add a layer (or two) of abstraction between this very basic level of commands
(called machine code) and what we actually have to write in our programs.

We are interested in assembler because it is extremely close to what actually happens on a computer.
When we start using python next, you will see many high level instructions. These get translated into
the most basic instructions for you, by something called a compiler, runtime or interpreter. Think of
it as a translator between different languages.

The following figure illustrates how a program entered by a programmer is translated into machine
code.

Javascript,
Java, Python

C++ Compiler/
interpreter

Machine 'cocde

CPU

Figure 1: Software language stack. Source: http://web.stanford.edu/class/cs101/.

program.exe
Source code

Compiler instructionl

"hello": [instruetion2

instruction3

— n I "ma
b a + "!'"; | instructiond

P

]
Il

Figure 2: Compiler. Source: http://web.stanford.edu/class/cs101/.

1.2 Assembler

Let’s construct a computer. This is a very simple example, but it illustrates the ideas that are used in
more complex systems.

We’ll construct a computer with 16 memory locations. We call those registers and give them a
unique number, from 0 to 15. Each register can store exactly one number. The storage for the program
itself is separate and not limited. It could be a punch card. There is also a so called instruction pointer
that points to the current instruction in the program. The instruction counter starts at the beginning
of the program and increases by one after every command. For now, our computer has only six
commands. They all have a very similar form and are composed of at most 4 parts:

COMMAND PARAMETER PARAMETER PARAMETER

Some of the commands only have one or two parameter, in which case the others are simply ignored
Every command together with any possible combination of parameters gives something called a
machine code, a single number that tells the computer what to do in one step.
Here are all the commands that we’ll really need in our assembler language.

Command | Argument 1 Argument 2 Argument 3 | Result

SET s0 rl rl := s0 (The first argument is inter-
preted as a number, rather than a reg-
ister address)

COPY r0 rl rl ;=10

PRINT r0 Print value of r0

INPUT r0 Input value from user and store it in r0
ADD r0 rl r2 12 :=rl 412

SUB r0 rl r2 r2:=10-rl

IF 0 rl Execute next command only if r0 > rl
JUMP 0 Jump r0 commands forwards (back-

wards if negative)

To write and run an assembler program you have to write down the commands in the right order.
If you had taken this course 40 years ago, you’d be taking our your punch cards and start punching.
We will write them in a text file. You should by now know how to edit a text file on the linux system.

Every time you want to run your program, you need to save it first. Then, you run the simulator
(or interpreter) and tell it to read in your text file. It will go through the text file, line by line, and
execute exactly the command that you gave it.

Let’s have a demo of the simplest possible example program. A program that outputs ’1°.

SET 1 r®
PRINT r@

Code 1: Assembler program that outputs '1°.

Let’s add two numbers.

SET 1 ro®
SET 2 rl
ADD r® rl1 r2
PRINT r2

Code 2: Assembler program that adds two numbers and outputs the result.

Let’s output all numbers from 0 to 9.

SET ©
PRINT
SET 1
PRINT
SET 2
PRINT
SET 3
PRINT
SET 4
PRINT
SET 5
PRINT
SET 6
PRINT
SET 7
PRINT
SET 8
PRINT
SET 9
PRINT

ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro
ro

Code 3: Assembler program that outputs numbers from ’0’ to ’9’.

This was rather dull. Let’s find a smarter way.

SET 0
SET 1

ro
r2

SET -2 r3

PRINT

ro

ADD r® r2 ro
JUMP r3

Code 4: Assembler program that outputs all numbers.

The above program runs for ever. To make it stop we need a conditional statement. And now the
correct way of only outputting the first 10 numbers

SET 0 ro
SET 10 ril

SET 1

r2

SET -3 r3

PRINT

ro

ADD r® r2 ro

IF r1

ro

JUMP r3

Code 5: Assembler program that outputs the first 10 numbers.

Our assembler language is very basic. For example, it has no commands for multiplication. How

can we solve this?

I’ll give you ten minutes. Come up with a assembler program that multiplies the two numbers in
register 0 and 1 and store the result in register 2. You can assume that the two numbers are integers.

SET
SET
SET
SET
SET
SET
SET
ADD

ro

rl

r2

r3

r4

-4 r5

3 r6

r4 r3 r3

[l — = >N U¥]

IF r3 ril
JUMP ro

ADD

r®@ r2 r2

JUMP r5
PRINT r2

Code 6: Assembler program multiplying two numbers.

Last but not least, let’s write an algorithm for dividing two numbers, a and b. Let’s assume that
a and b are positive integers and that the result ¢ = a/b is also an integer.

SET
SET
SET
SET
SET
SET
SET

42 ro®
7 rl
-1 r2
1 r3
3 r7
-9 r8
-4 r9

ADD r3 r2 r2
SET 0 r4
SET O r5
ADD r3 r5 r5
IF r5 r2
JUMP r7
ADD rl1 r4 r4
JUMP r9

IF

r® r4

JUMP r8
PRINT r2

Code 7: Assembler program dividing two integers.

Some other possible programs, I could ask you for:

e Square a given number

e Print out first N squares (1,2,4,8,16,...)

e Subtract a number from another number, only using additions.

We will now use this set of commands to calculate the Fibonacci numbers. This is a series of
number that occurs frequently in nature. The first few numbers in the sequence are:

1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
They can be calculated by the recursion formula
Fn:Fn71+Fn72

i.e. the next number is the sum of the previous two numbers. The first two numbers are set two one.
Let’s now implement this in our Assembler language

SET 1 r®
PRINT r0

SET 1 r1
PRINT ri1

ADD r® rl1 r2
PRINT r2
COPY r1 ro®
COPY r2 ri1
SET -5 r3
JUMP r3

Code 8: Simple assembler program to calculate Fibonacci numbers.

As a comparison, here is the same program in python

a=1

print a

b=1

print b

while 1:
c = a+b
print c
a=b
b=c

Code 9: Python program to calculate the Fibonacci numbers.

