PSCB57 - PROF. HANNO REIN

EXAM PREPARATION



- | will test your understanding of
concepts, not memorization.

- Be able to transfer existing knowledge
to a new area.

- Everything from the lectures, the
assignments, and tutorials, can be on

the final exam.



- No complicated calculations, i.e. no
calculator needed.

- If a calculation gets difficult, that might
be an indication that you made a
mistake.

- If there are many questions, answer the
questions that you know first. Keep
track of the time.
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GENERAL TIPPS

- Don't get confused if a question uses a
different symbol than the one we used
in the lecture!



- It's ok not to answer a question.

- If you do not understand a question or
are unsure what is asked for, raise your
hand and ask for clarification. Others
might have the same problem.
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PYTHON




- You should be comfortable with
reading short python programs

- Understand control structures (1 £/for/
while), variables, lists, built-in
functions such as 1len, print, etc.
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PYTHON

def x(1):
N = len(l)
r = -1e307

for 1 i1n range(N):
if r < 1[1]:
r = 171]
return r



- No need to know detailed syntax for
functions

- No need to worry about getting indices
on matrices right

- You're not expected to code up any
significant program on paper
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NUMBER FORMATS



- Fixed number of bits to represent an
integer number

- Typical: 16, 32, 64 bits

- Finite ranges:
0..216-1, 0..232-1, 0..2644-1 (unsigned)
-215,.215-1, 2312311, 263,.263-1 (signed)



- Python 3 does something special:
It automatically increases the number of

bits if you run over the range.

- Other programming languages
(including earlier versions of python)
behave differently
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INTEGERS

What do you use integers for?
- Counters

- Exact calculations
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INTEGERS

What are integers not good for?

- Calculations with a large dynamic range
(i.e. most scientific applications!)
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FLOATING POINT NUMBERS

- Fixed number of bits (64 for double
precision that we focussed on)

- Be able to decode simple binary
representations of floating point
numbers
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FLOATING POINT NUMBERS

64 bits

I T 52 bits for the mantissa

11 bits for the exponent
1 bit for the sign

7 — (_1>S . 26—1023 . (1 4 m)



PSCB57 - PROF. HANNO REIN

FLOATING POINT NUMBERS

Important numbers to remember:
- Range: ~ -1e-308...1e+308

- Precision: ~1e-16
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FLOATING POINT NUMBERS

When do operations become problematic?
- 1e+30+ 3.4 =1e+30
- 1e-16 + 1e-19 =1.001e-16
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FLOATING POINT NUMBERS

How to prepare for the exam?

- Look at the Jupyter notebooks in the
course repository.

- Try to convert a few floating point
numbers by hand.

- Try to come up with floating point
expressions that barely work.
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ALGORITHMIC COMPLEXITY



ldea:

- The time the algorithm takes to complete
a calculation depends on some number N

- N can be size of your dataset, number of

steps in an integration, or the number of
outputs.

- How does the runtime scale for large N?
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ALGORITHMIC COMPLEXITY
O(1) Constant
O( log(N) ) Logarithmic
O(N) Linear
O( N log(N) ) Log Linear
O( N2) Quadratic
O( N3) Cubic
O( 2N) Exponential
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ALGORITHMIC COMPLEXITY

How to determine the complexity of a
given piece of code:

- Is it recursive? How many times does it
call itself?

- Closely look at for/while loops. Are they
nested?

- Focus on the big picture, ignore details.
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LINEAR LEAST SQUARE FIT



® @®pData .
— curve fit |

Definition: minimize
the “sum of squares’

I




We have a function with a set of free
parameters a.

Want to parameters a to minimize S.

This lead us to the matrix equation:




Where the matrix C depends on the
function we want to fit and the
datapoints. For example:

t t
f(t) = ap + a; sin <ﬁ27r> + ag cos <ﬂ27r>

S1N (2427r) COS (24 27T)

sin (%2%) COS (%27?)

1 sin (%54‘1 27r) COS (mgil 27T)



You should be able to construct the
matrix C, as well as the vector b and
matrix A for arbitrary functions and
datapoints.

You are expected to then solve the linear

system of equations only if the number
of parameters is <=2.



What does the term linear refer to?

t l

24

f(t) = ap + ay sin (2—;1271’) + (2 COS (—/277)

Know when you cannot fit a function
using a linear least square fit.
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ROOT FINDING METHODS
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ROOT FINDING METHODS

» Where do we encounter root finding?
» Least Square Fit
» Optimization methods

» Constrained equations



Intermedia value theorem.

Guarantees existence of a root.
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ROOT FINDING METHODS

» Intermedia value theorem directly leads
to the bisection method

» Bisection method always works!
» Needs starting interval

» Reduces interval by half at each step
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ROOT FINDING METHODS

» How many times do you have to iterate
the bisection method when using double
floating point precision?

» At most 52 times!
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ROOT FINDING METHODS

» Other root finding methods: Newton’s
method

» Even faster than bisection
» Needs a starting point (no interval)

» Need to know the derivate of the
function.

» Might not converge!
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ROOT FINDING METHODS

» Root finding is a very large topic.
» We just scratched the surface.

» Our methods work well for 1D

» High dimensional problems are MUCH
harder
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PLOTTING
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Perceptually uniform colour map

Colormap evaluation: option d.py
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INTERPOLATION METHODS
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INTERPOLATION METHODS

» Difference between interpolation and fit

» Interpolation goes through all data
points, independent of any model

» Note that plotting data points and
connecting them by lines is already an
interpolation



Nearest neighbour / constant
interpolation / Voronoi mesh

Piece-wise linear interpolation




Lagrange interpolation
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Cubic Spline

Know the definition: a piecewise cubic
polynomial that goes through all
datapoints, matched derivatives at
datapoints to make it smooth

You do not need to know: how to derive
matrix and how to solve it.



You should be able to choose the
appropriate interpolation method!
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You should be able to choose the
appropriate interpolation method!
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DIFFERENTIAL EQUATIONS
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DIFFERENTIAL EQUATIONS

» Definition: A set of equations where the
solution is a function.

» We talk about ordinary differential
equations in this course.

» They have an order, determined by the
highest derivative.



Some differential equations depend
explicitly on time, others do not
(autonomous)

In general we write a first order ordinary
differential equations in the form

y'(t) = F(y,t)




Note that the names of the variables
might differ depending on the problem
at hand.

You need to identify which is the time
variable, which is the right hand side, etc

y'(t) = F(y,t)




You can rewrite any high order

differential equation as a set of first order
differential equations.

This is important because almost all the
methods we talked about are for first
order differential equations.

Practice how to do that!
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DIFFERENTIAL EQUATIONS

» Every differential equations needs initial
conditions!

» First order -> 1 initial condition

» Second order -> 2 initial conditions

» Etc



We talked about multiple numerical
methods to solve differential equations.

All work by splitting the time into very
small timesteps dt

The smaller the timestep, the more
accurate, but also the more expensive
the method



Explicit Euler method
Simplest method possible

1st order

82y

E ~ —dt2

ot
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DIFFERENTIAL EQUATIONS

» Explicit Euler method

» Calculate derivative (right hand side)
at beginning of time step, multiply with
dt, then add to value at beginning.



Graphical representation of explicit Euler
method

Tangent Line
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DIFFERENTIAL EQUATIONS

» Explicit Euler method is rarely ever used.
» This is because of the low order.
» Midpoint method is second order.

» Uses a sub-step, effectively combining
two Euler steps



Graphical representation of the midpoint
method




Higher order methods can be
constructed.

Often used: 4th or 5th order Runge Kutta
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DIFFERENTIAL EQUATIONS

» N-body simulations are simulations of N
interacting gravitational bodies

» Need to solve a 6*N dimensional
coupled differential equation

» Difficult because we need very high
precision over long timescales
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DIFFERENTIAL EQUATIONS

» N-body simulations often use advanced
integration methods

» Either very high order

» Or geometric/symplectic integrators
which preserve some of the underlying
symmetries of the problem.



PSCB57 - PROF. HANNO REIN

MONTE CARLO METRODS



A random number generator outputs
pseudo random numbers on a computer

Randomness is hard for the computer

A good random number generator
outputs uncorrelated, uniformly
distributed random numbers that are
hard to predict.
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MONTE CARLO METHODS

» Random numbers are used in
cryptography

» We use them to simplify numerical
calculations!
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MONTE CARLO METHODS

» Calculate pi using random numbers:
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MONTE CARLO METHODS

» In general: use random numbers to
calculate an integral:




BAYES' THEOREN
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BAYES' THEOREM

» Very important statical tool.

» Derivation is very simple!

P(B| A)P(A)
P(B)

P(A|B) =




Makes use of conditional probability.

The syntax P(A|B) means the probability
that event A is true given event B is true.

Can use Bayes’ theorem to inver the
equation to get P(B|A)
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BAYES' THEOREM

» Can apply this to simple statical
problems such as the Cookie problem or
the Monty Hall problem.

» Make sure you know how we did those
calculations!



Diachronic interpretation

Used in relationship to testing a
hypothesis in science using data

Terms in Bayes' Theorem have names.
Know them and understand their
meaning!
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BAYES' THEOREM P(B|A)P(A)

P(B)

P(A|B) =

» P(A|B) = Posterior
» P(BJA) = Likelihood
» P(A) = Prior

(

» P(B) = normalization constant
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BAYES' THEOREM

» Using Bayes' theorem is related to
solving a high dimensional integral.

» Can use Monte Carlo Methods to do that.

» We are randomly sampling the posterior.
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COMING UP. ..
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TUTORIAL TOMORROW

» Come to get help with the project.
» Run the presentation by me, if you want.

» Also can ask questions about any other
material from the course.
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PROJECT REPORT

» Due on December 4th

» Can hand itin in paper form or submit it
online.
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PROJECT PRESENTATIONS

» Will happen on December 4th

» All project members need to be present,
but not all need to take partin the
presentation

» Make sure your computer works if you
plan to use the projector

» Make sure you do not run over



