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1 Interpolation

Let’s start with the definition. Interpolation is the method of constructing new data points within the
range of a known data points.

Suppose we are given a dataset with the average temperature for each month of the year. The
dataset for Toronto is printed in Table 1 and plotted in Figure 1. Each data point represents the
average temperature during one month. Note that the months are enumerated with integers starting
at 0 (January). There is no information given about the temperature on a particular day.
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Figure 1: Average monthly temperature in Toronto (0 = January). Source: Environment Canada.



Month | Average temperature [C]
0 -3.7
-2.6
1.4
7.9
14.1
19.4
22.3
21.5
17.2
10.7
4.9
-0.5
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Table 1: Temperatures in Toronto (0 = January).

If someone asks, ”What is the temperature at the end of January”, the honest answer would be
”T don’t know”. The dataset that was given to us only knows about the temperature averaged over
the entire month of January. However, one can see by eye, that there is a clear trend: it is coldest in
January and warmest in July.

If you want to be able to give an answer but don’t have any additional data available, we use a
method called interpolation. In general, you will be given a set of N function values of an unknown
function f in the form

(.%'07f(1'0)), ($1,f(l’1)), cee (folaf(fol))

and your task is to estimate f(x) for an arbitrary x in g < a < zy_1.

1.1 Interpolation with a piece-wise constant function
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Figure 2: Temperature in Toronto (0 = January). Piece-wise constant interpolation.



To come back to the question from above, a reasonable answer would be, "Well, I don’t know what
the typical temperature at the end of January is, but it is probably not drastically different from
the average temperature in January.”. This idea corresponds to the simplest interpolation one can do:
using piece-wise constant functions. It is sometimes also referred to as nearest-neighbour interpolation.
We simply choose the x; and the corresponding f(z;) which is closes to the x that we are interested
in. The result is a discontinuous series of constant functions. If you know nothing about the data
points that are given to you, to get a value of the interpolated function f(x), you need to go through
the entire list of known data points to find the one that is closest. For the temperature data from
above, we can simply things quite a bit. First, we have the data already sorted. Second, the known
data points have integers (the months) as their = value. So we only need to find the closes integer to
the = that we are interested in and then look up the known data point. Figure 2 shows a piece-wise
constant function interpolation to the Toronto weather data. The following function shows a possible
implementation in python, assuming the known data points are given in the array temperaturel[].

def temperature_constant_interpolation(x):
x = int(round(x))
return temperature[x]

Code 1: Python listing implementing piece-wise constant interpolation of the temperature data.

We can also apply this method to a function that depends on two variables  and y. In this two
dimensional case, we’ll end up with a Voronoi diagram as shown in Figure 3

Figure 3: Example of a piece-wise constant interpolation in two dimensions. Source: Wikimedia

(CCSA).



1.2 Interpolation with a piece-wise linear function
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Figure 4: Temperature in Toronto (0 = January). Piece-wise linear interpolation.

There are several disadvantages with a pice-wise constant interpolation. First of all, it’s not a very
good approximation. Most likely, it is warmer at the end of April than at the beginning of April.
However, we have assumed a constant temperature across the entire month. Furthermore, at the
transition from end of April to beginning of May the temperature suddenly jumps by 5 degrees. This
seems unrealistic. Mathematicians call the piece-wise constant interpolation discontinuous.

We can indeed do better. What if we just draw a straight line from one data point to the next?
This is called piece-wise linear interpolation, sometimes just referred to as linear interpolation or lerp.
The result looks much smoother, as shown in Figure 4. Now the function is continuous.

However, some people will still not be happy with this. If you look closely, you'll see that the
function has a sharp kink at every data point. That means we can’t calculate the derivative of the
interpolating function at those points. Hence the piece-wise linear interpolation is non-differentiable.
We'll later discuss another interpolation scheme which is both continuous and differentiable.

But before we do that, let’s look at how we calculate the piece-wise linear function. First, we need
to find the given data point to the left and right of the value = that we are interested in. Let’s call
them z; and z,. Then, the interpolation function f(:z:) is

Fle) = flan) + (Flan) = fl) -
Ty — I
Remember that the values f(z;) and f(z,) are given to us. What we don’t know is how the function
f looks like, which is why we are constructing an approximation (an interpolation), which we call f .
The python source code to create the piece-wise linear interpolation of the temperature data is
shown in Code 2. Note that the code snippet is specific for the periodic temperature example from. It
assumes the temperatures are stored in the one dimensional array temperature with indices ranging
from 0 to 11. Note that the code does not check if x; or x, are exceeding the array bounds.



def temperature_linear_interpolation(x):
x1 = int(math. floor(x))
xr = int(math.ceil (x))

f x1
f xr

temperature[x1]
temperature[xr]

return f x1 + (f_xr—f_x1)*«(x-x1)/(xr-x1)

Code 2: Python listing implementing piece-wise linear interpolation of the temperature data.

1.3 High order polynomial interpolation

So far, we have only considered the point directly to the left and right of the value x that we want to
interpolate to. What if we take into account all the data points that we are given. If we have N data
points, then we can find a polynomial of degree N — 1 that goes through all the points and which we
can evaluate at any point = to find the interpolated value we want to know. This is exactly what the
Lagrange interpolation polynomial does.

Given a set of N data points of the form (xg,yo),...,(xN—1,yn—1) the interpolation polynomial
in Lagrange form is a linear combination

N-—1
L(z) =Y y;t;(z)
§=0

where the Lagrange basis polynomials are

(1) = T—xm _ (x—wo) (—wj) (@—zp) (@—zNnoa)
b %ELA%_%l(%_%) (Tj —xj-1) (T —xj41) (T —2N-1)
m#j

Have a look at the basis polynomials. They are constructed such that they are exactly zero at all
data points points except the j-th one, where the basis polynomial is 1. This guarantees that all data
points lie on the curve. An example of a Lagrange polynomial, fitted to our temperature dataset is
shown below.
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Figure 5: Lagrange interpolating polynomial to the temperature dataset.

This figure also illustrates a few of the problems associated with high order polynomial interpola-
tion. First, you can see that outside of the interval where we have data points, the curve goes of very
quickly. This makes sense, since it is a high order polynomial after alll Second, you can see a hint of
ringing. Just between the data points at x = 0 and © = 1 you can see a local maximum. This is clearly
not shown in our original data and purely an artifact of our interpolation routine. Ringing can be
much worse than in the example shown above. Especially if the data points are spaced equidistantly
or if there is some noise in the data (which will be for all measurements taken in a real world scenario).
One way to avoid ringing is to choose the z points according to Chebyshev nodes. We will not cover
this in the lectures, but you might want to keep the name in mind.

Nevertheless, you can see that the Lagrange polynomial is an excellent choice to get a good esti-
mate of interpolated values in-between data points. The curve is very smooth, in fact, it is infinitely
differentiable.

1.4 Cubic spline interpolation

Instead of going to higher and higher order, there is another way of creating a smooth function that
interpolates data-points. A cubic spline is a piecewise continuous curve that passes through all of the
values of a given dataset. This works particularly well for smooth datasets with no noise. Each of the
piecewise curves is a cubic polynomial with coefficients a;, b;, ¢; and d;:

Si(x) = a;(x — xi)3 +b;(x — :ci)2 +ci(z—x;)+ d; for x € [x;, 2441]

If we have N data-points, there are N — 1 intervals, hence (N — 1) - 4 coefficients that we need to find.
Two conditions in each interval arise because we have to match the two data-points at each end.

Si(xs) =yi,  Si(it1) = yipr

How about the other two parameters? We want to have a smooth function! Thus, we require that the
derivatives of the piecewise functions match at the interval boundaries:

(i) = Si(zi),  Sita(xi) = S)'(24)



We now have almost as many conditions as we have free parameters, except at the boundaries. What
could we possibly do there? There are multiple choices and it depends on the problem. We use
one called natural boundary condition which says that we set the second derivatives to zero at the
boundary.

As you can probably guess, this set of equations that we are generating will become a matrix equa-
tion. Let’s go through the individual steps. Finding the value for the d;s is simple. Our requirement
gives us

di = Si(xi) = y;
The condition to match the point at ¢ + 1 gives
Si(@ir1) = ai(@iz1 — 2:)° + bi(wis1 — 23)% + ¢i(@ig1 — ) + di = Yir
Let’s call the derivatives at point i, D;, i.e.
Si(z;)=D; =¢
and therefore
Si(zit1) = Diy1 = 3a;(ziv1 — ) + 2b;(zip1 — i) + Dy
We can now setup an equation system for a, b, ¢ and d:

Dis1+ Ds)(wix1 — ) 7> = 2(yis1 — vi) (i1 — x) >

a; = (

bi = (=Diy1—2D;)(wiz1 — ) " 4 3(yis1 — i) (@ig1 — @) 7
¢ = Dy

di =

We have one requirement left to play with, to match second derivatives at each interval. This gives us:

Sili(@i) = S{(zi)
S (xz1i) = Siyi(wina)
which equates to
6a;(xiy1 — ;) +2b; = 2bi4q

Let us now combine this with the earlier equation to get
3(yi — yim1)(wi — 1) T (@i — 23) + 31 — ¥i) @i — @) 7 (@ — @i0)
= Di1(wiy1 — 74)
+D2(3($Z+1 — (El) + (mz — .’Ez;l))
+Di1(w; — xi1)

Let us define

V=38 i ) 438 T Y )
Ty — Xj—1 Ti41 — T4
We can write this as a matrix equation
(ig1 —xi) Bwipr — 2z —xi—1) (x5 — Ti—1) | Di | =Y



At the end points, we have not enough information to fully determine all variables. We therefore come
up with new requirements there, let the second derivatives be zero.

(l)/(xo) = 2b0 = 0
Sy olzn-1) = 6an_2(xn_1—TN_2)+2bNy_2=0

This gives in terms of the D coefficients:
2D0 + D1 = 33— =
Dy-—2+4+2Dn1 = 33— =Yy

We can now complete the matrix from above to

2 1 0
(xz — .131) (3$2 — 2%1 — 330) (331 — 330) 0
0 (1’3 71’2) (31‘3721’2 71’1) (IQ*Z‘l) 0
(Tiy1 — x) (BTit1 — 2% —xi—1) (v —xi1)
0 1 2
Dy Yo
DL = }/z
Dy YN 1

This is a tridiagonal system and can easily be solved. Here, we just use the Gaussian eliminiation that
we already know. It is easy to find more efficient ways to solve it, but we don’t bother.

Once solved for the D;s, we can solve for the a;, b;, ¢; and d;s. This then defined all parameters
for the piecewise cubic function.

In the following figure, we apply this method to the average temperature in Toronto. As you can
see, it gives a very smooth and reasonable fit.
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Figure 6: Temperature in Toronto. Cubic spline interpolation.

One way to further improve this spline is to take advantage of the fact that the temperature is
periodic. This removes the extra criteria at the boundaries. The matrix will get some extra components
(i.e. is not tridiagonal anymore).

Now, we have this great spline interpolation method. Can you use it for any problem? No. Here’s
a word of caution. Look at the following dataset.
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Figure 7: Global temperature anomaly. Source: Climatic Research Unit (University of East Anglia).

The above figure shows the global temperature anomaly. This is an indication of climate change.
Clearly, there is a lot of noise in the data. Nevertheless, one can see a very dominant trend towards
higher temperatures. We could just fit a spline to this curve. The result is shown in the following
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Figure 8: Global temperature anomaly fitted with a cubic spline.

Although the spline is clearly going through all data-points and the curve is smooth at every point
in the interval, it is not a good indication of the trend. Why is that? We have fitted a smooth function
to noisy data. It’s the same issue that we encountered earlier and is sometimes called ringing or
Runge’s phenomenon.

Thus, interpolating this data with a constant or piece-wise linear function or even a cubic spline
does not make much sense. We would effectively try to interpolate the noise, not the data. So how
can we interpolate this data in a meaningful way. We can use a least square fit!

For example, a straight line fit will give us an indiction of how fast the temperature anomaly has
risen over time. We can even use it to extrapolate how much temperatures will be rising in the future.
The idea of a straight line fit is to find a linear function

f(z) = a1 + asx

which is the best fit to the data (see our earlier discussion on least square fits). Figure 7?7 shows the
straight line for for the climate data discussed above.

10



o
00

o
o
T
[}

]

temperature anomaly [deg C]
o
N

1980 1990 2000 2010
year

Figure 9: Global temperature anomaly with a straight line fit.
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