LECTURE 11

ASTC02 - PROF. HANNO REIN

COURSE EVALUATIONS

- Please fill them out
- Mention new equipment
- Cookies for the final exam if the response rate >75%

PRACTICAL 4

- Background light pollution
- Fit
- Citations

NEXT WEEK

- No new material
- Observing if clear
- Review for final exam

SPECTROSCOPY

ASTC02 - PROF. HANNO REIN

TWO ASTRONOMY MODES: (1) IMAGES

Source: NMSU, N. Vogt

TWO ASTRONOMY MODES: (1) IMAGES

TWO ASTRONOMY MODES: (2) SPECTRA

Source: NASA, ESA, and L. Hustak (STScI)

DISPERSIVE VS NON-DISPERSIVE

- Dispersive: convert wavelength to one detector coordinate, so we really measure x, y and infer x, λ.
- **Non-dispersive**: measure or reject photons in a way that relies directly on wavelength.

REFRACTION White Light

• Two surfaces

Wavelength dispersion highly non-linear

Source: https://www.edmundoptics.ca/

WHAT IS THIS?

DIFFRACTION

DIFFRACTION GRATING

Only one surface

Various orders might overlap

Source: https://www.edmundoptics.ca/

DIFFRACTION GRATING

$$\theta_m = \arcsin\left(\sin\theta_i - \frac{m\lambda}{d\sin\gamma}\right)$$

Source: physicsforum.com

COLLIMATOR

beam collimator

image projected at infinity

© 2012 Encyclopædia Britannica, Inc.

Required for dispersing spectroscopy

DATA REDUCTION

- For detector:
 - Dark frame
 - Flat field / Bias
- Determine coordinate-wavelength mapping
 - Internal emission-line lamp
- Subtract foreground night-sky emissions
- Absolute flux calibration

ESPRESSO, Source: eso.org

ESPRESSO

EXAMPLE: EXOPLANET DISCOVERY AND CHARACTERIZATION

ROBOTIC FIBER SYSTEM

The WEAVE fiber system on the William Hernelevelescope uses a ball of relation place about 950 fibers across the focal place. From https://www.observatoiredeparis.psl.eu/spip.php2pase=infprimer8id_atticle=4557&lang=fr.

MARIAN AND A CONTRACTOR

.....

SPECTRAL RESOLUTION

- Ability to resolve features in the spectrum
- High resolution spectrograph, CRIRES+ at ESO's VLT (see Michael's talk): ~100,000 - 200,000
- Goal for exoplanet detection: sub m/s

GAS DISCHARGE LAMPS

Source: Wikipedia

Fluorescent Lamp Diagram

Source: Regencysupply.com

TASK:

- Get a spectrometer.
- Calibrate it by looking at a fluorescent light bulb
- Look at the 6 mystery lamps. Try to determine the elements that drives the emission spectra.
- Bonus points for the final exam if you get it right.

TASK:

• You can either look through the spectrometer by eye, or try to use your phone.

