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BEFORE CCDS

Photographic plates for images 

Photomultiplier tubes for photometry 
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PHOTOMULTIPLIER TUBES
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PHOTOMULTIPLIER TUBES
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STATISTICS

Precision with which a quantity is 
measures is important. 

In this lecture: Frequentist approach 

Better: Bayesian approach 
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DIFFERENT SOURCES OF NOISE

Every instrument has background noise. 

Need to measure the background noise, then 
subtract it. 

Note that measuring the background noise has its 
own error associated with it!
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INSTRUMENTAL NOISE
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INSTRUMENTAL NOISE

SYSTEMATIC STATISTICAL 
E.g. random cosmic rays 

Can be measured as 
accurately as desired. 

But it may take a lot of time. 

E.g. temperature changes 

Unpredictable manner. 

Can NOT be improved by 
more measurements.  
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STATISTICAL FLUCTUATIONS

Inherent randomness of events

Well defined average number of photons that arrive on detector, 
100 photons per second 

If measured for finite time, will fluctuate from interval to interval 

Assumption: all events are uncorrelated 

Get distribution of counts N(x): 105, 98, 87, 96, 103, 101, 97

EXAMPLE: PHOTONS FROM A STAR (POISSON STATISTICS)
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Distribution of counts N(x): 105, 98, 87, 96, 103, 101, 97 

 

Probability of detecting x events (integer) if the average is m. 

If we collect 100 photons in a pixel on average, how likely is it that 
we collect exactly 100 in a single frame? 

If we collect 6 photons in a pixel on average, how likely is it that we 
collect exactly 6 in a single frame?

EXAMPLE: PHOTONS FROM A STAR (POISSON STATISTICS)

Px =
mxe�m

x!
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EXAMPLE: PHOTONS FROM A STAR (POISSON STATISTICS)

Px =
mxe�m

x!

1X

x=0

Px = 1

Note that:
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NORMAL DISTRIBUTION 

dPx =
1

�
p
2⇡

exp

✓
� (x�m)2

2�2

◆

Z x=+1

x=�1
dPx = 1

• Continuous —> differential probability 

• Two parameters, m and σ 

• Symmetric 

• Will give negative values!
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NORMAL DISTRIBUTION 
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NORMAL DISTRIBUTION 

dPx =
1

�
p
2⇡

exp

✓
� (x�m)2

2�2

◆

Px =
mxe�m

x!

• For large m Poisson distribution -> normal distribution 

•    

• For a lot of the events that we measure m is so large, we use the 
normal distribution even though a Poisson distribution would be 
more appropriate

� =
p
m
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VARIANCE AND STANDARD DEVIATION
• Definitions are valid for any distribution  

• Variance: 
 
 
 

• Standard deviation 

• For normal distribution, 

• Practical variance (because m is not independent) 

�2 =
1

n

nX

i=0

(xi �m)2

�

� = �

�2 =
1

n� 1

nX

i=0

(xi � xav)
2
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EXAMPLE
• On average, we have m=100 photons on the CMOS sensor per s 

• Poisson distribution  

• 1s exposure: 

• 100s exposure:  

� =
p
100 = 10

� =
p
10000 = 100

�/m = 0.1

�/m = 0.01
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EXAMPLE
• In reality, we are not photon limited 

• Other noise sources dominate, including: 

• Thermal noise 

• CMOS Amplifier 

• Atmosphere  

• Will assume normal distribution (note: there is a better way) 

• Can use multiple measurement to estimate mean and variance 



MCMC
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BAYES’S THEOREM



DIACHRONIC INTERPRETATION

One way of thinking about Bayes’s theorem. 
Suppose we have a hypothesis H and some 
data D. 

p(H|D) =
p(H) p(D|H)

p(D)

These terms now have names and can be 
interpreted as follows.
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DIACHRONIC INTERPRETATION

p(H|D) =
p(H) p(D|H)

p(D)

Prior p(H)

p(H|D) Posterior

p(D|H) Likelihood

p(D) Normalization constant
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Monty Hall Problem

• An application of Bayes's theorem


• Player picks door 1, host opens door 2


• Should the player change their initial choice?


• A = car is behind door 1 
B = host opens door 2 
C = car is behind door 3

P (A | B) =
P (B | A)P (A)

P (B)
<latexit sha1_base64="n1cq35QzDV33/aGJw1doeTzkJPI=">AAACE3icbZBNS8MwHMZTX+d8m3r0EhzC6mF0rqAehG1ePE5wL7CWkabpFpa+kKTCKPsOXvwqXjwo4tWLN7+NaVdBnQ8EHp7nH5L/z4kYFdIwPrWl5ZXVtfXCRnFza3tnt7S33xVhzDHp4JCFvO8gQRgNSEdSyUg/4gT5DiM9Z3KV9r07wgUNg1s5jYjto1FAPYqRVNGwdNKuNC2furClw0toeRzhpF1pwSxr6lDV+ixN9NmwVDaqF0pmHdaqRqZFUwa52sPSh+WGOPZJIDFDQgxqRiTtBHFJMSOzohULEiE8QSMyUDZAPhF2ku00g8cqcaEXcnUCCbP0540E+UJMfUdN+kiOxd8uDf/rBrH0zu2EBlEsSYDnD3kxgzKEKSDoUk6wZFNlEOZU/RXiMVJcpMJYzCDkKy+abwjd02qtXjVvzHLDzHEUwCE4AhVQA2egAa5BG3QABvfgETyDF+1Be9Jetbf56JKW3zkAv6S9fwExfJqP</latexit>

P (C | B) =
P (B | C)P (C)

P (B)
<latexit sha1_base64="WSn+qWb9n6o5tcyV4vuf5H6vxMk=">AAACE3icbZBNS8MwHMbT+TbnW9Wjl+AQVg+j1Yl6EMZ28TjBvcBaRpqmW1j6QpIKo+w7ePGrePGgiFcv3vw2pt0EdT4QeHief0j+PzdmVEjT/NQKS8srq2vF9dLG5tb2jr671xFRwjFp44hFvOciQRgNSVtSyUgv5gQFLiNdd9zM+u4d4YJG4a2cxMQJ0DCkPsVIqmigH7cqTTugHmwY8AraPkc4bVUaMM+aBlS1Mc0SYzrQy2b1UunMhFbVzLVoymCu1kD/sL0IJwEJJWZIiL5lxtJJEZcUMzIt2YkgMcJjNCR9ZUMUEOGk+U5TeKQSD/oRVyeUME9/3khRIMQkcNVkgORI/O2y8L+un0j/wklpGCeShHj2kJ8wKCOYAYIe5QRLNlEGYU7VXyEeIcVFKoylHMJ85UXzDaFzUrVOq7WbWrlem+MoggNwCCrAAuegDq5BC7QBBvfgETyDF+1Be9JetbfZaEGb39kHv6S9fwE4G5qT</latexit>
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How to calculate P(B)
• Involves summation over all  

possible scenarios


• In our case A and C:


• P(B) not needed to decide to decide if we should open door 1 or 3

<latexit sha1_base64="ie2GrEeQBWjn5L9q601BXHoTIrA=">AAACCHicdVDLSgMxFM3UV62vUZcuDBahg1BmVFq7EPrYuBzBPqAdSiZN29DMgyQjlLFLN/6KGxeKuPUT3Pk3ptMKPg+Ee3LOvST3uCGjQprmu5ZaWFxaXkmvZtbWNza39O2dhggijkkdByzgLRcJwqhP6pJKRlohJ8hzGWm6o9rUb14TLmjgX8lxSBwPDXzapxhJJXX1fTtXNeA5VOWmYti5igGPkkvNUKVmdPWsmS+VisWTAvxNrLyZIAvmsLv6W6cX4MgjvsQMCdG2zFA6MeKSYkYmmU4kSIjwCA1IW1EfeUQ4cbLIBB4qpQf7AVfHlzBRv07EyBNi7Lmq00NyKH56U/Evrx3J/pkTUz+MJPHx7KF+xKAM4DQV2KOcYMnGiiDMqforxEPEEZYqu4wK4XNT+D9pHOetQt66PM2Wq/M40mAPHIAcsEARlMEFsEEdYHAL7sEjeNLutAftWXuZtaa0+cwu+Abt9QOl25VV</latexit>

P (B) = P (B|A)P (A) + P (B|C)P (C)



LINE FITTING
p(D|H) Likelihood
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p(yi|xi,�yi,m.b) =
1q
2⇡�2

yi

exp

 
� (yi �mxi � b)2

2�2
yi

!

L =
NY

i=1

p(yi|xi,�yi,m, b)

One data point:

Multiple data points:



LINE FITTING
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L =
NY

i=1

p(yi|xi,�yi,m, b)

Multiple data points:

Log likelihood:
lnL = K �

NX

i=0

(yi �mxi � b)2

2�2
yi

= K � 1

2
�2



BAYES THEOREM
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p(m, b| {yi}Ni=1 , I) =
p({yi}Ni=1 |m, b, I) p(m, b|I)

p({yi}NI=1 |I)

I Short hand for all prior knowledge
{yi}Ni=1 Short hand for all data



BAYES THEOREM
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p(m, b| {yi}Ni=1 , I) =
p({yi}Ni=1 |m, b, I) p(m, b|I)

p({yi}NI=1 |I)

We want to know this!
It’s a distribution!
We can sample the distribution!



BAYES THEOREM
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p(m, b| {yi}Ni=1 , I) =
p({yi}Ni=1 |m, b, I) p(m, b|I)

p({yi}NI=1 |I)

Let’s ignore the normalization constant 
(does not depend on m or b)



METROPOLIS HASTINGS ALGORITHM 
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1) Start at a random place (ideally close to 
a sensible value) 

2) Predict random new place 

3) a) Choose new place if it’s better 
b) ‘Sometimes’ choose even if it’s worse 

4) Keep track of path. Path is the posterior 
distribution!  



METROPOLIS HASTINGS ALGORITHM 
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We need: 

1) Likelihood/Prior function 

2) MH algorithm 

3) Starting point


