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HOW FAR AWAY IS ...
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COSMIC DISTANCE LADDER

*Work out the answer in steps (rungs)
* Starting with short distances (‘human scale’)
* Calibrate each rung using the previous one

* Ending with distances comparable to the size of the
observable universe
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9 RUNGS



RUNG 1 - RADIUS OF THE EARTH
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ARISTOTLE 384-322BCE

* Sun is alway opposite of moon during lunar
eclipses

* Must be caused by Earth’s shadow

* Terminator always a circular arc, independent
of the position of the Earth and Sun

* Only one object whose projection is always a
circle: a sphere.
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ERATOSTHENES 276-194 BCE

* Aristoteles already knew that Earth can’t be
incredibly large: some stars can be seen from
Egypt but not from Greece

* Awell in Syene, Egypt reflects sun light at
noon on June 21

* A well in Eratosthenes’ hometown,
Alexandria did not reflect the Sun.

* Sun was at a 7 degree angle.

* Once we know the distance between

Alexandria and Syene, we know the radius of
the Earth!

Polar cirdle
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ERATOSTHENES 276-194 BCE

* Distance between Alexandria and Syene
estimates to be 5000 stadia (740 km).

e Used information from trade caravans for the
estimate!

* Result: 40,000 stadia
(about 6800 km)

* Only 8% off!



RUNG 2 - RADIUS AND DISTANCE
OF THE MOON
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ARISTARCHUS ~ 310-230 BCE

* Knew lunar eclipses caused by shadow of
Earth

* Shadow size roughly 2 Earth radii

* Many observations show that eclipses take
roughly 3 hours

* Moon takes one month to make a full rotation
around the Earth

» Distance to the moon about 60 Earth radii




ASTCO2 - COSMIC DISTANCE LADDER

ARISTARCHUS ~ 310-230 BCE

*» Have: distance to the Moon.

» Still need: angular size. Idea: measure the
time it takes to set.

* 2 minutes = 1/720 of a day

*1/720 of 360° = 0.5°

* Basic trigonometry gives the radius of the
Moon (1/3 Earth’s radius)

* Side problem: Aristarchus did not have an
accurate value of xt!




RUNG 3 - RADIUS AND DISTANCE
OF THE SUN



310-230 BCE

Each new Moon appears one lunar month
after the previous one

Aristarchus noticed that a half Moon occurs
slightly earlier than the midpoint between a

new and a full Moon.

Half-lit Moon
(first quarter)

He estimated 12 hours. “

- . ' B = O
But is hard to measure precisely. B

True value: 1/2 hour

Elementary trigonometry gives the
distance to the Sun!
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HIPPARCHUS  190-120 BCE
PTOLEMY 90-168 CE

* Because of this difficulty, Aristarchus
estimates the distance to the Sun to be 20
times the distance Earth-Moon

* Hipparchus and Ptolemy improves the result
to 42

* True value is 390

* But important conclusion:
Sun is much further away!

* Heliocentric model (1700 years before
Copernicus)




RUNG 4 - DISTANCES FROM THE
SUN TO THE PLANETS
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BABYLONIANS

* Already knew the apparent motion
of Mars repeats itself after 780 days

* Called the synodic period
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PTOLEMY 90-168 CE

* Calculation of the distance to Mars already
attempted by Ptolemy

* Got inaccurate results because of the errorin
the Earth-Sun distance:
Sidereal period of 15 years
Distance of 4.1 AU

* True values are 687 days and 1.5 AU

1 Earth Year = 365 days
1 Mars Year = 687 Earth days or 669 sols (martian days)



ASTCO2 - COSMIC DISTANCE LADDER

COPERNICUS 1473-1543

* Know synodic period of 780
days

* Copernican model asserts that
Earth revolves around Sun in

365 days

* Subtract the two angular
velocities to get the Martian
sidereal period of 687 days
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KEPLER 1571-1630

* Copernicus assumes planets move in perfect
circles

» Kepler suspected that was not the case

* Did not match Tycho Brahe's observations '

Tycho Brahe's Mars Observations
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KEPLER

1571-1630

* Calculating the orbit exactly from these

observations seemed hopeless - not enough

information

* To find the orbit, we need to know Earth’s

location first (see your lab report for finding

asteroid orbits)
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KEPLER 1571-1630

* Einstein called Kepler's trick an idea of pure
genius.

* Use Mars itself as a fixed point of reference to
observe Earth!

* Take measurements spaced 687 days apart ... ..
* Mars will be at exact same location

e Earth will have moved

* Can now determine Earth’s orbit from fixed {-------------
point of reference!




RUNG 5 - SPEED OF LIGHT
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ROMER 1644-1710

* Speed of light can be measured in the lab
nowadays.

* First measurement used astronomy

* Remer observed lo rotating around Jupiter
evert 42.5 hours.

* Can be timed exactly by the time moon
enters planet’s shadow.
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ROMER 1644-1710

* Noticed that period is not
uniform depending on relative
position of Earth and Jupiter

* When Earth moves away from
alignment with Jupiter, period
lagged by about 20 minutes.

* Conclusion light needs 20

minutes to travel
2 AU

® True value 17 minutes
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ROMER 1644-1710

* Can invert this method to
measure distances to other
planets.

* Now, most accurate distance
measurements in the Solar
system use radar

* But early measurement of finite
speed of light led to Maxwell’s
equation and Einsteins theory
of special relativity




RUNG 6 - NEARBY STARS
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FRIEDRICH BESSEL  1784-1846

e Parallax method

* Take two observations of a star
6 months apart

* Compare location to stars much
further away.

* Simple trigonometry gives
distance
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RUNG 7 - MODERATELY DISTANT
STARS



ASTCO02 - COSMIC DISTANCE LADDER

EJNAR HERTZSPRUNG  1873-1967
HENRY RUSSELL 1877-1957

* Measure apparent brightness
and colour of stars

* Colour of stars is related to e e T Tae T e
absolute magnitude

* Can determine distances up to - Zimes o
300,000 light years.




RUNG 8 - VERY DISTANT STARS



Certain class of stars, Cepheids,
oscillate in brightness

Absolute brightness is
correlated with period

Cepheids are very bright. Allow
for measurements up to

13,000,000 light years

Can now measure distances to
other galaxies
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RUNG 9 - THE UNIVERSE



1889-1953

Notice a correlation
between an object’s
distance and its

redshift

Leads to accurate
maps of very large
distances

4° =mlice
52621 galaxies
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2dF Galaxy Redshift

4° =lice
526821 galaxies
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MULTI-MESSENGER ASTRONOMY
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