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Conclusions

Determining the stability of planetary systems is a very old
problem. Analytic solution cannot answer all question.

Our new machine-learning classifier SPOCK can accurately
predict the stability of compact planetary systems over billions
of years in seconds (10° times faster than direct N-body).

Workhorse for numerical N-body simulations are operator
splitting methods, especially the Wisdom-Holman integrator.

Embedded Operator Splitting methods (EOS) are very easy to
implement as they do not require a Kepler solver. An EOS
method can be configured to be equivalent to: leap-frog,
Wisdom-Holman, Mercury, SYMBA, and many new methods.




The History of the
N-body problem

(Solar System)

Laskar (Lagrange et la stabilite du Systeme solaire, 2006), Laskar (2013)
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Newton (1687)




Newton (Opticks 1717,1730)

And to show that | do not take Gravity for an essential Property of
Bodies, | have added one Question concerning its Cause, chosing to
propose it by way of a Question, because | am not yet satisfied about
it for want of Experiments. [...]

For while comets move in very excentrick orbs in all manner of
positions, blind fate could never make all the planets move one and
the same way in orbs concentrick, some inconsiderable irregularities
excepted, which may have risen from the mutual actions of comets
and planets upon one another, and which will be apt to increase, till
this system wants a reformation.



:|‘| ) !u.:

\ I

; t‘nl'
I

‘ Lil

HEL

|

|l

n"' i

20

o
’ /

On March 1st, 228 BC, at
4:23 am, mean Paris time,
Saturn was observed two
fingers under Gamma in

Virgo.
=

Observations from 1590
and 1650.

Six million years ago
Jupiter and Saturn were at
the same distance from the
Sun.



Explanations for the irregularities?

Euler was twice awarded a prize in 1748 and 1752 related to this
problem by the Paris Academy of Sciences.

Lagrange thought that Euler’s calculations were wrong and did his
own.



Laplace (1776)

Mr. Euler, in his second piece on the irregularities of Jupiter and
Saturn, find it equal for both these planets. According to Mr. de
Lagrange, on the contrary, [...] it is very different for these two bodies.
[...] | have some reasons to believe, however, that the formula is still
not accurate. The one which | obtain is quite different. [...] by
substituting these values in the formula of the secular equation, |
found absolutely zero, from which | conclude the alteration of the
mean motion of Jupiter, if it exists, does not result from the action of
Saturn.



Lagrange (in a letter to d’Alembert, 1775)

| am ready to give a complete theory for the variations of the elements
of the planets under their mutual action. That Mr. de la Place did on
this subject | liked, and I flatter myself that he will not be offended if |
do not hold the kind of promise that | made to completely abandon this
subject to him; | could not resist to the desire to look into it again, but |
am no less charmed that he is also working on it on his side; | am
even very eager to read his subsequent research on this topic, but |
do ask him not to send me any manuscript and send them to me only
in printed form; | would be obliged that you tell him, with a thousand
compliments from my side.



Secular Dynamics, Lagrange (1774)

1) Averaging over short time scales. Brown & Rein
Lagrange |
2) Perturbation theory.
o 5,50
No semi-major axis changes to first E 6.31 7.05
and also second order (Poisson, E 19.80 18.84
Haretu and Poincaré) in the
expansion. n 18.31 17.74
This still contradicts Ptolemy's H 0 0
observations from antiquity. H 25 34 26.35
- 2,90
'« 069



Laplace (1785)

Simple energy argument implies:
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Thus, can be confident that the change in orbits must be due to
mutual interactions.

He’s also shown, no secular terms. Hence must be short period.
Near 5:2 mean motion resonance. Period of 900 years.

Why is 900 years important?






Stability



Le Verrier (1840, 1841)

Follows up on the work of Lagrange and Laplace

Goes to higher order.

Discovered small divisor problem: third order could be larger than
second order terms



Poincaré (1897)

The terms of these series, in fact, decrease first very quickly and then
begin to grow, but as the Astronomers’s stop after the first terms of the
series, and well before these terms have stop to decrease, the
approximation is sufficient for the practical use. The divergence of
these expansions would have some disadvantages only if one wanted
to use them to rigorously establish some specific results, as the
stability of the Solar System.



Kolmogorov (1954), Arnold (1963), Moser (1962)

Kolmogorov showed that convergent perturbation series exists

Skipping many subtleties (degeneracy, small masses, slow Arnold
diffusion)

In short: not useful for determining the stability of our Solar System
with a very specific set of initial conditions



Predicting the stability of planetary
systems with machine learning

Tamayo et al. (submitted)
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Applications
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- Thousands of observed planets, many in
multi-planetary systems
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- When fitting observations, should use
a likelinood which incorporates long
term stability
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- Analytical estimates alone
are not good enough, direc
numerical simulation way
too slow
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Corner plot of Trappist-1 posterior, Grimm et al (2018



Direct

Integration:
(10 hrs)

SPOCK:
(0.5 sec)

Tamayo et al. (submitted)

_

time

First 104 orbits

12 Summary Metrics

1. Variance in eccentricity

difference
2. (See Table 1)

12-Dimensional
Feature Space

Stable Systems

o o
Unstable Systems

XGBoost Classification Surface

Make
prediction

Stable
@

®
Unstable

109 orbits



Training dataset

- Training dataset is not
random

- Many systems in or near
mean motion resonances

- Analytic framework to setup
training dataset

- Also use analytic
framework to calculate
features

Tamayo et al. (submitted)
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Comparison
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Performance
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Easy to use iImplementation

Setup simulation in REBOUND

In [1]: import rebound

sim = rebound.Simulation()

sim.add(m=1.)

sim.add(m=1.0e-5, P=1., e=0.03, 1=0.3)
sim.add(m=1.0e-5, P=1.2, e=0.03, 1=2.8)
sim.add(m=1.0e-5, P=1.5, e=0.03, 1=-0.5)

In [*]: sim.integrate(1el0)

Direct N-body simulation
with REBOUND

May take days

Tamayo et al. (submitted)

In [3]: from spock import StabilityClassifier
model = StabilityClassifier()
model.predict(sim)

Out[3]: 0.020546363666653633

Prediction with SPOCK

Takes one second



Numerics:
Operator splitting methods



Fundamentals
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Equations of motions r, — g m; 3
j=1 |rj — Iy
JF1

kinetic term
potential term
/v

Hamiltonian H=T+U



Fundamentals

Poisson Bracket of two functions f, g of the canonical coordinates g, p.

dg oh dg dh
{g,h}=2( d ° )

—~ \ 0gi 9P N dpi 9q;

Allows us to write Hamilton’s equations as

0H 0H
= =1{gi, H} and  p; = —
I pi 9q;

q.i ={plaH}

Allows us to write the time derivate of any function of g and p as

g =1{g, H}



Fundamentals

Introduce
y(t) = (q1(t),...,qn(t),p1(t),...,pn (1))

The differential equation for the N-body problem is then
y(t) ={y, H}

A bit more notations. Lie derivative:

Ly = {7H}

Define a solution operator:
| H |
v (Yo)

Notation roughly follows Hairer, Lubich & Wanner 2006



Fundamentals

The differential equation we’re trying to solve

y(t) = L y(t)

A formal way to write down the solution operator

[H](

0y exp (tLy) Id(yo)

1
(Id +tLgld + §t2£H£HId -+ .. > (yO)

Y0)

Only a formal solution!

Notation roughly follows Hairer, Lubich & Wanner 2006



Fundamentals

N

r, = m.; b
(2 ] ‘3

j=1 r; —r
Splitting method J7F1

Y=Ly (y)
H=A+1B

y=(La+ L)) =Laly)+Lsy)

We can now consider two new differential equations

y=La(y) and y=Lp(y).



1
H=2p +U(g) y(t) = (q(t),p(t))
Let’s split the Hamiltonian:
1
A= 52?2 B =U(q)

y=LAY y=LpYy
y =1y, A} y={y,B}

q=2p qg=20
p=0 p=—-VU(q)

Solutions are trivial!



q=7p
. > sol[gA](qO,po) = (qo +t - po,po)
p =10
q=0 B]
> ] — ] _tVU
p=—VU(q) #i (40, P0) = (qo,Po (9))

ldea of a splitting scheme is:

H Bl [A
907[5 ](yo) ~ 807[5 ]SOL ](yo)



A
7[5 ](Qoapo) = (g0 +t - po, po)

22 (40, p0) = (g0, po — t - VU(q))

Y

\4 \4 1
exp (tLa)exp (tLp) = exp (t[,A tLp 5752 LA, LB O(t3)>
Can show that BeR

La, L] = Lia By
So, we’re solving the EoM for the following Hamiltonian exactly
1
H =A+B+ 5zt{A, B} + O(t?)



We’'re solving the EoM for the following Hamiltonian exactly

1
H =A+ B+ 5t{A, B} + O(t?)

for our specific example:

1 1 (1 \
H = op® +U(g) + 5ty 505 Ul@) p + O(F)

\ /

= H — SpVU(q) + O

Works for small t, thus
t — dt

and repeat many times.



First order scheme

Al [B
o i

E ~ O(dt)

Standard second order leapfrog:

A B A
90([).5115907[5 ]SOE).EL&

E ~ O(dt?)

Fourth order leapfrog:

Al _[B] _[A] | B] |A] [B] _[A]
Spozt 90200590((),5_@)1590(1_4a)t90(().5_a)t902atSaozt
a = 0.675603 ...

E ~ O(dt*)



Embedded Operator
Splitting Methods (EOS)

Rein, Brown & Tamayo (2019), Rein, Tamayo & Brown (2019), Rein (2020)



N-body Hamiltonian

kinetic term
potential term
/7

H=T+U
-1 N-1 N-1
T= )T, U = Uy
= 1=0 j=i+1
P-2 Gm;m
]-'l — L Ul] — ' J
2m; ry —rj]



Leap frog integrator

kinetic term
potential term
/7

H=T+U

Both solutions are trivial again!

A
o (yo) = (qo +t - po, po)

o (o) = (qo,po — t - VU(q))



Wisdom-Holman integrator

Dominant part of motion

Perturbation

Solution for B is still trivial.

Solution for A is more complicated. We need a “Kepler solver”.



Kepler Solver (WHFast)

1 static const double invfactoriall35] = {1., 1., 1./2., 1./6., 1./24., 1./120., 1./720., 1./5040.,

1./40320., 1./362880., 1./3628800., 1./39916800., 1./479001600., 1./6227020800., 1./87178291200.,
1./1307674368000., 1./20922789888000., 1./355687428096000., 1./6402373705728000., 1./121645100408832000.,
1./2432902008176640000., 1./51090942171709440000., 1./1124000727777607680000.,
1./25852016738884976640000., 1./620448401733239439360000., 1./15511210043330985984000000. ,
1./403291461126605635584000000., 1./10888869450418352160768000000., 1./304888344611713860501504000000.,
1./8841761993739701954543616000000., 1./265252859812191058636308480000000.,
1./8222838654177922817725562880000000., 1./263130836933693530167218012160000000. ,
1./8683317618811886495518194401280000000., 1./295232799039604140847618609643520000000. };

2

3 static inline double fastabs(double x){

4 return (x > 0.) ? X : =x;

5}

6

7 static void stumpff_cs(double xrestrict cs, double z) {

8 unsigned int n = 0;

9 while(fastabs(z)>0.1){

10 z = z2/4.;

11 N++;

12 ¥

13 const int nmax = 15;

14 double c_odd = invfactoriall[nmax];

15 double c_even = invfactoriall[nmax-1];

16 for(int np=nmax-2;np>=5;np-=2){

17 c_odd = invfactoriallnp] - z *cC_odd;

18 c_even = invfactoriallnp-1] - z *c_even;

19 }

20 cs[5] = c_odd;

21 cs[4] = c_even;

22 cs[3] = invfactoriall[3] - z *cs[5];

23 cs[2] = invfactoriall2] - z *csl4];

24 cs[1] = invfactoriall[l]l - z *cs[3];

25 for (;n>0;n-=){

26 Z = 2%4.;

27 cs[5] = (cs[5]+cs[4]1+cs[3]1*xcs[2])*0.0625;

28 cs[4] = (1.+cs[1])*cs[31%0.125;

29 cs[3] = 1./6.-zxcs[5];

30 cs[2] = 0.5-zxcs[4];

[ ran I s



Embedded Operator Splitting Method (EOS)

H=A+10B

Rein 2020



Example EOS Implementation in Python

def drift(particles, dt): 4 A1

for p in particles:
p.X += dt*xp.vx

p.y += dt*p.vy
p.z += dt*p.vz
def kick(particles, dt, shell=1l): <= A2
for pl in particles:

for p2 in particles:
if pl!=p2:
if shell==0 and (pl.m==1. or p2.m==1.): continue
if shell==1 and (pl.m!=1. and p2.m!=1.): continue
dx, dy, dz = pl.x-p2.x, pl.y-p2.y, pl.z-p2.z
dr3 = pow(dx**2 + dy**2 + dzxx2, 3./2.)
pl.vx —-= dt*p2.mkdx/dr3
pl.vy —= dt*xp2.mkdy/dr3
pl.vz —= dt*p2.mkdz/dr3

Rein 2020



A |ot of choice

Full Hamiltonian

N

'4

1st splitting A

¥

At each splitting, can choose:

- How to split Hamiltonian into two parts
- Which splitting method to use

- Timestep



Embedded Operator Splitting Method (EOS)

First order method:
A A A
i~ i N

But can also choose any arbitrary operator splitting method:

Al [A1] _[A2]  [A1]
Pt ~PostPt Po.st

Al [Ad] _[A2] [A4] [Az] [Aq] [A2] [A1]
Spt ~ Spozt 902(175 90(0.5—04)75(70(1—4a)t(70(0.5—a)tg020ét Spozt

Alternatively, reduce timestep in embedded method:

A Aq Ao "
o~ (eilelne))

Rein 2020



Splitting methods

e LF: the standard second order leap-frog or Stormer-Verlet
method.

e LF4: A fourth order Suzuki-Yoshida method using three
force evaluations per timestep (Creutz & Gocksch 1989).

e LF8: An eighth order method with 17 function evaluations
per timestep (McLachlan 1995b).

e LF(4,2): A second order method using two function evalu-
ations per timestep (McLachlan 1995a). This method has
generalized order (4,2), i.e. the dominant error term for
small timesteps is 0(67‘4 + 6272) and there is no error term
0(61‘2).

e LF(8,6,4): A fourth order method with generalized or-
der (8,6,4) using seven function evaluations per timestep
(Blanes et al. 2013). When used with a WH-type splitting
and a Kepler solver, it is referred to as SABA(S8, 6,4). The

dominant error term is O(e7® + €27% + €31%).

e PMLF4: A fourth order method with only one modified
force evaluation per timestep (Blanes et al. 1999). This
method also includes pre- and post-processing stages.



EOS methods are extremely tlexible

leap frog,

splitting into T + U higher order leap frog

Wisdom Holman integrator,
higher order generalizations

splitting into near and far
interactions

Hybrid symplectic
integrators, Mercury

splitting into many different

“shells” SYMBA

splitting into Keplerian
motion + perturbations



Example: complicated hierarchical systems

Kinetic term (drift)

plgnet-planet interactions A planet-star and star-
(kick) 2 star interactions (kick)







Conclusions

Determining the stability of planetary systems is a very old
problem. Analytic solution cannot answer all question.

Workhorse for numerical N-body simulations are operator
splitting methods, especially the Wisdom-Holman integrator.

Embedded Operator Splitting methods (EOS) are very easy to
implement as they do not require a Kepler solver. An EOS
method can be configured to be equivalent to: leap-frog,
Wisdom-Holman, Mercury, SYMBA, and many new methods.

Our new machine-learning classifier SPOCK can accurately
predict the stability of compact planetary systems over billions
of years in seconds (10° times faster than direct N-body).




