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The History of the
N-body problem

Laskar (Lagrange et la stabilite du Systeme solaire, 2006), Laskar (2013)
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Newton (1687)




Newton (Opticks 1717,1730)

And to show that | do not take Gravity for an essential Property of
Bodies, | have added one Question concerning its Cause, chosing to
propose it by way of a Question, because | am not yet satisfied about
it for want of Experiments. [...]

For while comets move in very excentrick orbs in all manner of
positions, blind fate could never make all the planets move one and
the same way in orbs concentrick, some inconsiderable irregularities
excepted, which may have risen from the mutual actions of comets
and planets upon one another, and which will be apt to increase, till
this system wants a reformation.
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On March 1st, 228 BC, at
4:23 am, mean Paris time,
Saturn was observed two
fingers under Gamma in

Virgo.
=

Observations from 1590
and 1650.

Six million years ago
Jupiter and Saturn were at
the same distance from the
Sun.



Explanations for the irregularities?

Euler was twice awarded a prize in 1748 and 1752 related to this
problem by the Paris Academy of Sciences.

Lagrange thought that Euler’s calculations were wrong and did his
own.



Laplace (1776)

Mr. Euler, in his second piece on the irregularities of Jupiter and
Saturn, find it equal for both these planets. According to Mr. de
Lagrange, on the contrary, the third volume of Mémoires de Turin, it is
very different for these two bodies. [...] | have some reasons to
believe, however, that the formula is still not accurate. The one which |
obtain is quite different. [...] by substituting these values in the formula
of the secular equation, | found absolutely zero, from which | conclude
the alteration of the mean motion of Jupiter, if it exists, does not result
from the action of Saturn.



Lagrange (in a letter to d’Alembert, 1775)

| am ready to give a complete theory for the variations of the elements
of the planets under their mutual action. That Mr. de la Place did on
this subject | liked, and I flatter myself that he will not be offended if |
do not hold the kind of promise that | made to completely abandon this
subject to him; | could not resist to the desire to look into it again, but |
am no less charmed that he is also working on it on his side; | am
even very eager to read his subsequent research on this topic, but |
do ask him not to send me any manuscript and send them to me only
in printed form; | would be obliged that you tell him, with a thousand
compliments from my side.



Secular Dynamics, Lagrange (1774)

1) Averaging over short time scales. Brown & Rein
Lagrange |
2) Perturbation theory.
o 5,50
No semi-major axis changes to first E 6.31 7.05
and also second order (Poisson, E 19.80 18.84
Haretu and Poincaré) in the
expansion. n 18.31 17.74
This still contradicts Ptolemy's H 0 0
observations from antiquity. H 25 34 26.35
- 2,90
'« 069



Laplace (1785)

Simple energy argument implies:

m g ms

— const
aj as

Thus, can be confident that the change in orbits must be due to
mutual interactions.

He’s also shown, no secular terms. Hence must be short period.
Near 5:2 mean motion resonance. Period of 900 years.

Why is 900 years important?



Stability



Poincaré (1897)

Those who are interested in the progress of celestial mechanics, [...]
must feel some astonishment at seeing how many times the stability
of the Solar System has been demonstrated.

Lagrange established it first, Poisson has demonstrated it again, other
demonstrations came afterwards, others will come again. Were the
old demonstrations insufficient, or are the new ones unnecessary?
The astonishment of those people would probably double, if they
would be told that perhaps one day a mathematician will demonstrate,
by a rigorous reasoning, that the planetary system is unstable.



Le Verrier (1840, 1841)

Follows up on the work of Lagrange and Laplace

Goes to higher order.

Discovered small divisor problem: third order could be larger than
second order terms



Poincaré

The terms of these series, in fact, decrease first very quickly and then
begin to grow, but as the Astronomers’s stop after the first terms of the
series, and well before these terms have stop to decrease, the
approximation is sufficient for the practical use. The divergence of
these expansions would have some disadvantages only if one wanted
to use them to rigorously establish some specific results, as the
stability of the Solar System.



Kolmogorov (1954), Arnold (1963), Moser (1962)

Kolmogorov showed that convergent perturbation series exists

Skipping many subtleties (degeneracy, small masses, slow Arnold
diffusion)

In short: not useful for determining the stability of our Solar System
with a very specific set of initial conditions



Operator splitting methods
Fundamentals

Rein, Brown & Tamayo (2019), Rein, Tamayo & Brown (2019)



Fundamentals

Poisson Bracket of two functions f, g of the canonical coordinates g, p.

dg oh dg dh
{g,h}=2( d ° )

—~ \ 0gi 9P N dpi 9q;

Allows us to write Hamilton’s equations as

0H 0H
= =1{gi, H} and  p; = —
I pi 9q;

q.i ={plaH}

Allows us to write the time derivate of any function of g and p as

g =1{g, H}



Fundamentals

Introduce
y(t) = (q1(t),...,qn(t),p1(t),...,pn (1))

The differential equation for the N-body problem is then
y(t) ={y, H}

A bit more notations. Lie derivative:

Ly = {7H}

Define a solution operator:
| H |
v (Yo)

Notation roughly follows Hairer, Lubich & Wanner 2006



Fundamentals

The differential equation we’re trying to solve

y(t) = L y(t)

A formal way to write down the solution operator

[H](

0y exp (tLy) Id(yo)

1
(Id +tLgld + §t2£H£HId -+ .. > (yO)

Y0)

Only a formal solution!

Notation roughly follows Hairer, Lubich & Wanner 2006



Fundamentals

Splitting method
Y=Ly (y)
H=A+1B
y=(La+Lp)y)=Laly) +LBY).

We can now consider two differential equations

y=La(y) and y=Lp(y).



1
H=2p +U(g) y(t) = (q(t),p(t))
Let’s split the Hamiltonian:
1
A= 52?2 B =U(q)

y=LAY y=LpYy
y =1y, A} y={y,B}

q=2p qg=20
p=0 p=—-VU(q)

Solutions are trivial!



1= 2P (o) = (4o, po — ¢ - VU (q))

ldea of a splitting scheme is:

H Bl [A
907[5 ](yo) ~ 807[5 ]SOL ](yo)



A
907[5 ](yo) = (g0 +t - po, po)

o (o) = (qo,po —t - VU(q))

\4 \4 1
exp (tLa)exp (tLp) = exp (t[,A tLp 5752 LA, LB O(t3)>
Can show that BeR

La, L] = Lia By
So, we’re solving the EoM for the following Hamiltonian exactly
1
H =A+B+ 5zt{A, B} + O(t?)



We’'re solving the EoM for the following Hamiltonian exactly

1
H =A+ B+ 5t{A, B} + O(t?)

for our specific example:

1 1 (1 \
H = op® +U(g) + 5ty 505 Ul@) p + O(F)

\ /

= H — SpVU(q) + O

Works for small t, thus
t — dt

and repeat many times.



Operator splitting methods
for the N-body problem

Rein, Brown & Tamayo (2019), Rein, Tamayo & Brown (2019)



Wisdom-Holman integrator

Splitting the Hamiltonian:
H=A+¢eB

Wisdom-Holman integrator:
WH = e24eBe34,

Hamiltonian we’re solving is:

H' =A+€B ed2{A {A,B}} — € d—tQ{B {A, B}}

+ O(edt?) + O(e*dt*) + . ..




Wisdom-Holman integrator

Wisdom-Holman integrator:
1 1
WH = e24eBez4.
Extension to higher order
- CL1A blB agA bQB agA bgB CL4A b4B a5A
SABA(10,6,4) = e e’ e 727 e 73 e e P e

€b5B€CL6A€b6B6a7Aeb7B€a8A€bgB€a9A

Which solves
H' =A+ €eB + O(edt'®) + O(2dt®) + O(e*dt*) + . ..

McLachlan (1995), Laskar & Robutel (2001), Blanes et al. (2015)



Survey (Rein et al. 2019a)

Start up/shut Only A, Implemented in
Name and synonyms Main references down One time-step Cost B O(edt’) O(edt?) O (€’dr?) REBOUND
WH * SABA1 (d) (), (e), () - ABA 1 v 2 v
WHFAST (e) M2 (b)
WHCp CM2 (b) (), (c), () o ABA 1 v o p+1 2 V(uptop =17)
WHCCKI (ideal kernel) (b) c® ch A B, A x = not 00 00 4 (not possible)

possible

WHCKC (comp. kernel) (b) Ciin A(B A 5 v 18 4 v
WHCKM (mod. kick (b) Ciin ABA 1 18 4 v
kernel) CMM4 (b)
WHCKL * (lazy impl. (b) Ciin ABBA 2 v 18 4 3 v
kernel)
WHCCKC (comp. kernel) (b) cO ¢, A(B A 5 v 18 4 v
WHCCKM (mod. kick (b) () c@ctp, ABA 1 18 4 v
kernel) WHCK (f)
WHCCKL (lazy impl. (b) c@cly, ABBA 2/ 18 4 3 v
kernel)
SABA2 (d) - ABABA 2 v 4 2 v
SABA3 (d) - A(BA)? 3 v 6 2 v
SABA4 d) - A (B A)* 4 v 6 2 v
SABAC2 (d) - BA(B A?B 3 4 4 v
SABAC3 (d) - BA(B AYB 4 6 4 v
SABAC4 ), () - BA(BA)'B 5 6 4 v
SABACLA * (lazy impl. This paper - BBA(BA*BB 6 6 4 3 v
cor.)
SABA(10,4) (h) - A(B A 7 v 10 4 v
SABA(8,6,4) (h) - A(B A 7 v 8 6 4 v
SABA(10,6,4) * (h) - A(B A8 8 v 10 6 v




Alternative 1
Dynamical Systems Approach

Wisdom 2018, Wisdom, Holman & Touma 1996



Wisdom-Holman integrator revisited

Splitting the Hamiltonian:
H=A+¢€B

The actual Hamiltonian solved

, dt? , dt?
H' =A+ B~ (A, {A, B}} — ¢ 5 (B {4,B}}

+ O(edt*) + O(e*dt*) +




Wisdom-Holman integrator revisited

Wisdom’s “dynamical systems approach” looks at

H = A+ ¢eB+e€B Z cos(nt)
n#0
— A+ 27T527T(Qt)€B

This Hamiltonian is now trivial to solve




Alternative 2
Quadratures

L askar & Robutel 2001



Trying to solve an ODE
y(t) = Luy(t)

We can also integrate both sides to get

/ (1) dt = / Cay(tdt

Thus

y(t) = / Lry(t)dt






perturbation

R ——_
-_

dt time

One-sided Riemann sum is equivalent to (symplectic) Euler method
Euler = e?e®



perturbation

e EEE——
-—_-—— m- - - — — — e, —

time
dt dt
2 2
Mid-point method is equivalent to the WH method

1 1
WH = e24eBez4.



Quadratures

perturbation

e’ \ e et | e

SABA4 — ea’lAeblBea2A€bQB€a3A6b3B6&4Aeb4B

€a5A

equivalent to a 4 point GaufB3-Legendre quadrature



What matters for
long-term integrations?

Rein, Brown & Tamayo (2019), Rein, Tamayo & Brown (2019)



Wisdom-Holman

dt? , dt?

H'=A+eB — eo— {A{A, B}} — €75 {B.{A, B}} + O(edt") + O(%dt") + ...
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Rein, Tamayo & Brown (2019)



Wisdom-Holman with correctors
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Wisdom-Holman with modified Kernel

----- WH —— WHCKL
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Rein, Tamayo & Brown (2019)



SABA(10,6,4)

----- WH —— WHCKL
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Cost

Measured in function evaluations

1071
----- WH —— WHCKL
—— SABA(10,6,4)

1071 - — T -
1072 1071 10°

timestep [Jupiter years]

Rein, Tamayo & Brown (2019)



Secularly evolving system

Jupiter
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H =A+¢B

dt?
kv {A,{A,B}}

% (B BY)

+ C’)(edt4) + O(e*dt*)
+ ...

Rein, Brown & Tamayo (2019)




periastron error [rad]

periastron error [rad]

—— One step error
—— One step error due to {A, {A,B}}

- == Cumulative error due to {A, {A,B}} ;
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Figure 4. Periastron error in a simulation with one planet and
general relativistic corrections. Solid lines are one step errors,
dashed lines are cumulative errors.

H =A+¢B

dt?
o Eﬂ {A7 {A7 B}}

% (B BY)

+ O(edt4) + O(e*dt*)

Rein, Brown & Tamayo (2019)



Applications to
non-Hamiltonian systems
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Conclusions

Operator splitting methods are very powerful for integrating
perturbed systems

Two methods stand out for planetary systems: WHCKL,
SABA(10,6,4)

Energy error is not a good metric for the long-term evolution
of secular systems

Symplectic correctors alone offer no improvement to Solar
System integrations

Dozens of high order integrators implemented in REBOUND.
Orders of magnitude gain in accuracy without an additional
cost!




