

"There are infinite worlds both like and unlike this world of ours."

Epicurus (341-270 B.C.)

Demo

The Exoplanet App is available for free on the AppStore.

Biosignatures

Spectral resolution

Planet/moon false positive

Biosignatures

Biosignature

Life

Carl Sagan

A search for life on Earth from the Galileo spacecraft

Carl Sagan', W. Reid Thompson', Robert Carlson', Donald Gurnett & Charles Hord®

* Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853, USA

† Atmospheric and Cometary Sciences Section, Jet Propulsion Laboratory, Pasadena, California 91109, USA ‡ Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242-1479, USA § Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309, USA

In its December 1990 fly-by of Earth, the Galileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigment with a sharp absorption edge in the red part of the visible spectrum, and atmospheric methane in extreme thermodynamic disequilibrium; together, these are strongly suggestive of life on Earth. Moreover, the presence of narrowband, pulsed, amplitude-modulated radio transmission seems uniquely attributable to intelligence. These observations constitute a control experiment for the search for extraterrestrial life by modern interplanetary spacecraft.

Biosignature 1: Deficiency in the red colours

O₂/CH₄

O₂+C_H₄

What is a spectrum?

Collecting photons, sorting them by colour

The spectrum of Earth

Low spectral resolution

High spectral resolution

Spectral resolution is ultimately photon noise limited.

Taking spectra of exoplanets

Directly imaged planets

Transiting planets

Transiting planet

flux through atmosphere

$$F_{\text{transit}} = \frac{(r_p + H)^2 - r_p^2}{r_*^2} F_*$$

Directly imaged planet

stellar flux

luminosity of planet

 $F_* = \frac{L_*}{4\pi d^2}$ $L_{\text{reflected}} = \frac{L_* \pi A r_p^2}{4\pi a^2}$

planetary flux

$$F_{\text{reflected}} = \frac{L_{\text{reflected}}}{4\pi d^2} = \frac{L_* A r_p^2}{16\pi a^2 d^2}$$

Fundamental upper limit on resolution

Directly imaged planet

$$R_{\text{reflected}}^{\text{max}} = \frac{\lambda}{d\lambda} = \frac{\lambda}{d\lambda} \frac{\dot{N}_{\text{reflected}} \Delta t}{\text{SNR}^2}$$

$$= \underbrace{\frac{\pi}{64\sigma hc}}_{\text{constants planet}} \underbrace{\frac{A r_p^2}{a^2}}_{\text{star/band}} \underbrace{\frac{L_* \lambda^2 B_{\lambda}[T_*]}{T_*^4}}_{\text{telescope}} \Delta t \underbrace{\frac{D^2}{d^2} \text{SNR}^{-2}}_{\text{telescope}}$$

$$= 1683 \left(\frac{d}{10 \text{pc}}\right)^{-2} \left(\frac{D}{6.5 \text{m}}\right)^2 \left(\frac{\Delta t}{12 \text{hrs}}\right) \left(\frac{\text{SNR}}{10}\right)^{-2}.$$

Transiting planet

$$R_{\text{transit}}^{\text{max}} = \frac{\lambda}{d\lambda} = \frac{\lambda}{d\lambda} \frac{\dot{N}_{\text{transit}}^2 / \dot{N}_*}{\text{SNR}^2} \Delta t$$

$$= \underbrace{\frac{\pi}{4\sigma hc}}_{\text{constants planet}} \underbrace{\frac{L_* \lambda^2 B_{\lambda}[T_*]}{r_*^4 T_*^4}}_{\text{star/band}} \underbrace{\Delta t \frac{D^2}{d^2} \text{SNR}^{-2}}_{\text{telescope}}$$

$$= 12.2 \left(\frac{d}{10 \text{pc}}\right)^{-2} \left(\frac{D}{6.5 \text{m}}\right)^2 \left(\frac{\Delta t}{12 \text{hrs}}\right) \left(\frac{\text{SNR}}{10}\right)^{-2}.$$

Problems beyond the fundamental limit

- Telescope photon efficiency
- Spectrograph photon efficiency
- Systematic instrumental error

- Zodiacal light
- Exozodiacal light
- Star spots
- Background sources
- Upper limit on integration time
- Transiting planets on average 6 times further away

Planet/moon false positive

The basic idea

Model spectra

Model spectra

This is not the end of the story.

Possible ways to break degeneracy

Very close-by planet

$$R \sim d^{-2}$$

Single molecule biosignature

O₂/CH₄

Time variability

Relax Earth-Sun twin

Summary

It's very hard to take a spectrum of an Earth-like planet.

A new false positive: planet + moon. Impossible to distinguish in low resolution spectra.

Forget about Earth-Sun analogues. Search elsewhere.