An inconvenient truth about biosignatures on Earth-like exoplanets

Hanno Rein

"There are infinite worlds both like and unlike this world of ours."

Epicurus (341-270 B.C.)

"So far, we've found 1787 other worlds."

Open Exoplanet Catalogue (2014)

Demo

The Exoplanet App is available for free on the AppStore.

Biosignatures

Spectral resolution

Planet/moon false positive

Open Exoplanet Catalogue

Biosignatures

A search for life on Earth from the Galileo spacecraft

Carl Sagan^{*}, W. Reid Thompson^{*}, Robert Carlson[†], Donald Gurnett[‡] & Charles Hord[§]

- * Laboratory for Planetary Studies, Cornell University, Ithaca, New York 14853, USA
- † Atmospheric and Cometary Sciences Section, Jet Propulsion Laboratory, Pasadena, California 91109, USA
- ‡ Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242-1479, USA
- § Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309, USA

In its December 1990 fly-by of Earth, the Galileo spacecraft found evidence of abundant gaseous oxygen, a widely distributed surface pigment with a sharp absorption edge in the red part of the visible spectrum, and atmospheric methane in extreme thermodynamic disequilibrium; together, these are strongly suggestive of life on Earth. Moreover, the presence of narrowband, pulsed, amplitude-modulated radio transmission seems uniquely attributable to intelligence. These observations constitute a control experiment for the search for extraterrestrial life by modern interplanetary spacecraft.

1) Deficiency of flux in the red spectrum

O₂/CH₄

3) Multiple chemical species

O2+CH4

Spectrum of Earth

Directly imaged planets

Transiting planets

Spectral resolution is ultimately photon noise limited.

Transiting planet

flux through atmosphere

$$F_{\text{transit}} = \frac{(r_p + H)^2 - r_p^2}{r_*^2} F_*$$

stellar flux

luminosity of planet

$$F_* = \frac{L_*}{4\pi d^2}$$

$$F_* = rac{L_*}{4\pi d^2}$$

$$L_{\text{reflected}} = rac{L_*\pi r_p^2}{4\pi a^2}$$

$$F_{\text{reflected}} = \frac{L_{\text{reflected}}}{4\pi d^2} = \frac{L_* A r_p^2}{16\pi a^2 d^2}$$

Directly imaged planet

Signal:

Noise:

Transiting planet

Signal:

Noise:

Directly imaged planet

$$R_{\text{reflected}}^{\text{max}} = \frac{\lambda}{d\lambda} = \frac{\lambda}{d\lambda} \frac{N_{\text{reflected}} \Delta t}{\text{SNR}^2}$$

$$= \underbrace{\frac{\pi}{64\sigma hc}}_{\text{constants planet}} \underbrace{\frac{A r_p^2}{a^2}}_{\text{star/band}} \underbrace{\frac{L_* \lambda^2 B_{\lambda}[T_*]}{T_*^4}}_{\text{telescope}} \Delta t \underbrace{\frac{D^2}{d^2} \text{SNR}^{-2}}_{\text{telescope}}$$

$$= 1683 \left(\frac{d}{10 \text{pc}}\right)^{-2} \left(\frac{D}{6.5 \text{m}}\right)^2 \left(\frac{\Delta t}{12 \text{hrs}}\right) \left(\frac{\text{SNR}}{10}\right)^{-2}.$$

Transiting planet

$$R_{\text{transit}}^{\text{max}} = \frac{\lambda}{d\lambda} = \frac{\lambda}{d\lambda} \frac{\dot{N}_{\text{transit}}^2 / \dot{N}_*}{\text{SNR}^2} \Delta t$$

$$= \underbrace{\frac{\pi}{4\sigma hc}}_{\text{constants planet}} \underbrace{T_p^2 H^2 \underbrace{\frac{L_* \lambda^2 B_{\lambda}[T_*]}{r_*^4 T_*^4}}_{\text{star/band}} \Delta t \underbrace{\frac{D^2}{d^2} \text{SNR}^{-2}}_{\text{telescope}}$$

$$= 12.2 \left(\frac{d}{10 \text{pc}}\right)^{-2} \left(\frac{D}{6.5 \text{m}}\right)^2 \left(\frac{\Delta t}{12 \text{hrs}}\right) \left(\frac{\text{SNR}}{10}\right)^{-2}.$$

- Telescope photon efficiency
- Spectrograph photon efficiency
- Systematic instrumental error

- Zodiacal light
- Exozodiacal light
- Star spots
- Background sources
- Upper limit on integration time
- Transiting planets on average 6 times further away

Planet/moon false positive

The basic idea

Model spectra

This is not the end of the story.

Possible ways to break degeneracy

Deep absorption features

Very close-by planet

 $R \sim d^{-2}$

Single molecule biosignature

O₂/CH₄

Time variability

Relax Earth-Sun twin

Conclusions

Spectral resolution of exoplanet atmospheres is limited by photon noise.

Strong upper limit of 100-1000 in the most ideal case.

Forget about Earth-Sun analogues. Look elsewhere.

A new false positive: planet and moon. Impossible to identify in low resolution spectra

Open Exoplanet Catalogue

Community

This project can only be a success if we can build a community.

Hanno Rein, Marc-Antoine Martinod, Andrew Tribick, Kenneth Cott, Ryan Varley, Miguel De Val-Borro, Marc-Antoine, Jaroslav Merc, Tobias Mueller, Dave Spiegel Shoszowski, Allen Davis, Knutover, James Gregory, Dave, Allen Davis, Callum Rodwell, Anonymous

Open

Open ecosystem

Permissive Open source license (MIT)

Decentralized (no server)

Multiple branches

Every can contribute

Better

Faster updates
More contributors
Less error prone
More accountability
More credit
More democratic

Technology

Data storage, git
Distributed version control system
Keeps track of history
Rich toolchain (github)

Data format, XML
Hierarchical
Human readable
Flexible
Future-proof

