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Planet formation

Image credit: NASA/JPL-Caltech 



Migration in a 
non-turbulent disc



Migration - Type I

• Low mass planets

•No gap opening in disc

•Migration rate is fast

•Depends strongly on 
thermodynamics of the disc



Migration - Type II

•Massive planets (typically 
bigger than Saturn)

•Opens a (clear) gap

•Migration rate is slow

• Follows viscous evolution of 
the disc
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Migration - Type III

•Massive disc

• Intermediate planet mass

• Tries to open gap

• Very fast, few orbital 
timescales



Resonance capture



2:1 Mean Motion Resonance
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2:1 Mean Motion Resonance



2:1 Mean Motion Resonance
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Resonant angles

φ1 = λ2 − 2λ1 + �2

φ2 = λ2 − 2λ1 + �1

∆� = �1 −�2

• Fast varying angles

• Slowly varying combinations

• Two are linear independent

λ1 −�1 λ2 −�2



Non-turbulent resonance capture: two planets

parameters of GJ 876

φ1 = λ2 − 2λ1 + �2



GJ 876

Lee & Peale 2002



Take home message I

planet + disc = migration

2 planets + migration = resonance



HD 45364



HD45364
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Formation scenario for HD45364

• Two migrating planets

• Infinite number of 
resonances

Rein, Papaloizou & Kley 2010
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Fig. 1. Period ratio P2/P1 as a function of time (y-axis) and
migration timescale of the outer planet τa,2 (y-axis). The
migration timescale of the inner planet is τa,1 = 2000 yrs.
The inner planet is initially placed at r1 = 1AU. The ec-
centricity damping is given through K ≡ τa/τe = 10.

gration theory only. The parameter space of orbital config-
urations produced by planet disc interactions (low eccen-
tricities, relatively small libration amplitudes) is very small.
As in case of the GJ876 system, this can provide strong ev-
idence on how the system formed. Finally, we summarise
our results in section 6.

2. Formation of HD45364

2.1. Convergent migration and resonance capture

In the core accretion model (for a review see e.g. Lissauer
1993) a solid core is firstly formed by dust aggregation.
This process is much more efficient if water exists in solid
form. In the proto-stellar nebula this happens beyond the
ice line where the temperature is below 150 K at distances
larger than a few AU. Subsequently, after a critical mass is
attained (Mizuno 1980), the core accretes a gaseous enve-
lope from the nebula (Bodenheimer & Pollack 1986). Both
planets in the HD45364 system are interior to the ice line,
implying that they should have migrated inwards.

The migration rate depends on many parameters of the
disc such as surface density and viscosity as well as the mass
of the planets. The planets are therefore in general expected
to have different migration rates which leads to the possi-
bility of convergent migration. In this process the planets
approach orbital commensurabilities. If they do this slowly
enough, resonance capture may occur (Goldreich 1965) af-
ter which they migrate together maintaining a constant pe-
riod ratio thereafter.

Studies made by a number of authors have shown that
when two planets, of either equal mass or with the outer
one being the more massive, undergo differential convergent
migration, capture into a mean motion commensurability is
expected to occur provided that the convergent migration
rate is not too fast (Snellgrove et al. 2001). The observed
inner and outer planet masses are such that, if (as is com-
monly assumed for multiplanetary systems of this kind) the
planets are initially widely enough separated so that their
period ratio exceeds 2, at low migration rates a 2:1 commen-
surability is expected to form (e.g. Nelson & Papaloizou
2002; Kley et al. 2004).

Pierens & Nelson (2008) studied a similar scenario
where the goal was to resemble the 3:2 resonance between

Jupiter and Saturn in the early solar system. They also
found that the 2:1 resonance forms at early stages. However,
in their case the inner planet had the larger mass whereas
the planetary system that we are considering has the heav-
ier planet outside. In this situation the 2:1 resonance can
be unstable, enabling the formation of a 3:2 resonance
later on and the migration rate may stall or even reverse
(Masset & Snellgrove 2001).

2.2. The 2:1 mean motion resonance

We found that if two planets with masses of the observed
system are in a 2:1 mean motion resonance, which has been
form via convergent migration, this resonance is very sta-
ble. An important constraint arises, because as indicated
above, provided the planets start migrating outside any low
order commensurability, at the slowest migration rates a 2:1
resonance is expected to form rather than the 3:2 commen-
surability that is actually observed.

We can estimate the critical relative migration timescale
τa,crit above which a 2:1 commensurability forms from the
condition that the planets spend at least one libration pe-
riod while migrating through the resonance. The resonance
semi-major axis width ∆a associated with the 2:1 resonance
can be estimated from the condition that two thirds of the
mean motion difference across ∆a be equal in magnitude
to 2π over the libration period. This gives

∆a =
ωlfa2

n2
(1)

where a2 and n2 are the semi major axis and the mean mo-
tion of the outer planet, respectively. The libration period
2π/wlf can be expressed in terms of the orbital parameters
(see e.g. Goldreich 1965; Rein & Papaloizou 2009) but is,
for convenience, here measured numerically. If we assume
the semi-major axes of the two planets evolve on constant
(but different) timescales |a1/ȧ1| = τa,1 and |a2/ȧ2| = τa,2,
the condition that the resonance width is not crossed within
a libration period gives
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to pass through the 2:1 MMR.
If the planets of the HD45364 system are placed in a

2:1 resonance with the inner planet being located at 1 AU,
the libration period 2π/ωlf is found to be approximately
75 yrs. Thus, a relative migration timescale shorter than
τa,crit ≈ 810 yrs is needed in order to pass through the 2:1
resonance. For example, if we assume that the inner planet
migrates on a timescale of 2000 years, the outer planet has
to migrate with a timescale

τa,2,crit " 576 yrs. (3)

We have run several N -body simulations to explore the
large parameter space and confirm the above estimate. The
code used is similar to that presented in Rein & Papaloizou
(2009) and uses a fifth order Runge-Kutta as well as a
Burlish Stoer integrator, both with adaptive time-stepping.
Different modules deal with migration and stochastic forc-
ing. Non conservative forces are calculated according to
the procedure presented in Lee & Peale (2002) where the
migration and eccentricity damping timescales τa = |a/ȧ|
and τe = |e/ė| are imposed for each planet individually.

•Migration speed is crucial

• Resonance width and 
libration period define 
critical migration rate



Formation scenario for HD45364

Rein, Papaloizou & Kley 2010

H. Rein et al.: The dynamical origin of HD 45364
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Fig. 2. The semi-major axes (top), period ratio P2/P1 (middle), and ec-
centricities (bottom) of the two planets plotted as a function of time in
dimensionless units for run F5 with a disc aspect ratio of h = 0.07. In
the bottom panel, the upper curve corresponds to the inner planet.
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Fig. 3. A surface-density contour plot for simulation F5 after 100 orbits
at the end of the type III migration phase. The outer planet establishes
a definite gap, while the inner planet remains embedded at the edge of
the outer planet’s gap.

similar properties to those described above when making com-
parisons with observations.

It is possible that the solid cores of either both planets or just
the outer planet approached the inner planet more closely than
the 2:1 commensurability before entering the rapid gas accre-
tion phase and attaining their final masses prior to entering the
3:2 commensurability. Although it is difficult to rule out such
possibilities entirely, we note that the cores would be expected
to be in the super earth mass range, where in general closer
commensurabilities than 2:1 and even 3:2 are found for typical
type I migration rates (e.g. Papaloizou & Szuszkiewicz 2005;
Cresswell & Nelson 2008). One may also envisage the possibil-
ity that the solid cores grew in situ in a 3:2 commensurability, but
this would have to survive expected strongly varying migration
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Fig. 4. The semi-major axes (top), period ratio P2/P1 (middle), and ec-
centricities (bottom) of the two planets plotted as a function of time in
dimensionless units for run F4 with a disc aspect ratio of h = 0.04. In
the bottom panel, the upper curve corresponds to the inner planet.
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Fig. 5. A surface-density contour plot for simulation F4 after 150 orbits
after the planets went into divergent migration. The inner planet is em-
bedded and interacts strongly with the inner disc. The simulation uses
a 1D grid for 0.04 < r < 0.25.

rates as a result of disc planet interactions as the planets grew
in mass.

An issue is whether the embedded inner planet is in a rapid
accretion phase. The onset of the rapid accretion phase (also
called phase 3) occurs when the core and envelope mass are
about equal (Pollack et al. 1996). The total planet mass depends
at this stage on the boundary conditions, here determined by
the circumplanetary flow. When these allow the planet to have a
significant convective envelope, the transition to rapid accretion
may not occur until the planet mass exceeds 60 M⊕ (Wuchterl
1993), which is the mass of the inner planet (see also model J3
of Pollack et al. 1996; and models of Papaloizou & Terquem
1999). Because of the above results, it is reasonable that the in-
ner planet is not in a rapid accretion phase.

Page 5 of 8



Formation scenario for HD45364

Massive disc (5 times MMSN)

• Short, rapid Type III migration 

• Passage of 2:1 resonance

• Capture into 3:2 resonance

Rein, Papaloizou & Kley 2010

Large scale-height (0.07)

• Slow Type I migration once in resonance

• Resonance is stable

• Consistent with radiation hydrodynamics



Formation scenario leads to a better ‘fit’
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Take home message II

Migration scenarios can explain
the dynamical configuration of 
many systems in amazing detail



HD200964
The impossible system?



Radial velocity curve of HD200964
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Plot by Matthew Payne

• Two massive planets
1.8 MJup and 0.9 MJup

• Period ratio either 
3:2 or 4:3

•Another similar 
system, to be 
announced soon

•How common is 4:3?

• Formation?



Standard disc migration doesn't work
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Stability of HD200964
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Hydrodynamical simulations



HD200964

• In situ formation?

•Main accretion while in 4:3 
resonance?

• Planet planet scattering?

•A third planet?

•Observers screwed up?



Take home message III

There is still a lot that we 
do not understand



Moonlets in Saturn's Rings



Cassini spacecraft

NASA/JPL/Space Science Institute



• Propeller is wake of an 
unresolved moon

• Size ~50m-1km

•Most propellers found within 
1000km

•Origins unclear

•Dynamical evolution can be 
observed directly

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006



Longitude residual
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Observational evidence of non-Keplerian motion

4

Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).

Table 1
Orbit fits for trans-Encke propellers

Longitude Rms deviation

Nickname n,
◦
/day

a a, km
a

at epoch
b

# images
c

Time interval in km in longitude

Earhart 624.529897(2) 133797.8401(3) 57.85
◦

3 2006–2009 (2.7 yr) 730 0.31
◦

Post 624.4867(3) 133803.99(4) 58.09
◦

3 2006–2008 (1.7 yr) 12 0.01
◦

Sikorsky 623.917736(1) 133885.0475(2) 70.37
◦

3 2005–2008 (3.1 yr) 230 0.10
◦

Curtiss 623.7473 133909.36 210.04
◦

2 2006–2008 (1.7 yr)

Lindbergh 623.3176(2) 133970.69(2) 112.08
◦

3 2005–2008 (3.0 yr) 71 0.03
◦

Wright 622.5527 134080.03 251.85
◦

2 2005–2006 (1.3 yr)

Kingsford Smith 620.761649(2) 134336.9350(3) 202.44
◦

4 2005–2008 (2.9 yr) 670 0.28
◦

Hinkler 619.80519(1) 134474.639(2) 58.85
◦

3 2006–2008 (1.3 yr) 360 0.15
◦

Santos-Dumont 619.458729(1) 134524.6067(2) 324.11
◦

9 2005–2009 (4.3 yr) 670 0.28
◦

Richthofen 617.7011 134778.83 122.90
◦

2 2006–2007 (0.3 yr)

Blériot 616.7819329(6) 134912.24521(8) 193.65
◦

89 2005–2009 (4.2 yr) 210 0.09
◦

a
Formal error estimates, shown in parentheses for the last digit, are for the best-fit linear trend in longitude. They are

much smaller than the rms deviations in longitude, given in the right-hand column.

b
Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.

c
Not including images of insufficient quality to include in the orbit fit.

clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is

both long-lived and reasonably well-characterized by a

keplerian path. As Fig. 4 shows, a linear fit to the lon-

gitude with time (corresponding to a circular orbit) re-

sults in residuals of ±300 km (0.13
◦

longitude). How-

Tiscareno et al. 2010



Random walk

Analytic model
Describing evolution in a statistical manner
Partly based on Rein & Papaloizou 2009

N-body simulations
Measuring random forces or integrating moonlet directly
Crida et al 2010, Rein & Papaloizou 2010

∆a =
�

4
Dt

n2

∆e =
�

2.5
γDt

n2a2

Rein & Papaloizou 2010, Crida et al 2010



Random walk

REBOUND code, Rein & Papaloizou 2010, Crida et al 2010



Work in progress: a statistical measure 

4

Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).
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Formal error estimates, shown in parentheses for the last digit, are for the best-fit linear trend in longitude. They are

much smaller than the rms deviations in longitude, given in the right-hand column.

b
Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.
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clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is
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Take home message IV

Saturn's rings
=

small scale version of 
a proto-planetary disc



REBOUND
A new open source collisional N-body code



Numerical Integrators

ẋ = v

v̇ = a(x, v)

•We want to integrate the equations of motions of a particle

• For example, gravitational potential

• In physics, these can usually be derived from a Hamiltonian

• Symmetries of the Hamiltonian correspond to conserved 
quantities

H =
1
2
p
2 + Φ(x)

a(x) = −∇Φ(x)



Numerical Integrators

ẋ = v

v̇ = a(x, v)

•Discretization

•Hamiltonian

• The system is governed by a 'discretized Hamiltonian', if 
and only if the integration scheme is symplectic.

•Why does it matter?

H =
1
2
p
2 + Φ(x)

∆x = v ∆t

∆v = a(x, v) ∆t

?



Symplectic vs non symplectic integrators



Mixed variable integrators

• So far: symplectic integrators are great. 
•How can it be even better?
•We can split the Hamiltonian:

• Switch back and forth between different Hamiltonians
•Often uses different variables for different parts
• Then:

H = H0 + � Hpert

Integrate particle exactly 
with dominant Hamiltonian

Integrate particle exactly 
under perturbation 

Hamiltonian

Error = � (∆t)p+1 [H0, Hpert]



Kick  Drift

Example: Leap-Frog

H =
1
2
p
2 + Φ(x)

1/2 Drift 1/2 DriftKick



Kick  Kepler

Example: SWIFT/MERCURY

1/2 Kick 1/2 KickKepler

H =
1
2
p
2 + ΦKepler(x) + ΦOther(x)



Kick  Epicycle

Example: Symplectic Epicycle Integrator

1/2 Kick 1/2 KickEpicycle

Rein & Tremaine 2011

H =
1
2
p
2 + Ω(p× r)ez +

1
2
Ω2

�
r
2 − 3(r · ex)2

�
+ Φ(r)



10 Orders of magnitude better!
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ABSTRACT

RE
BO
UN
D is a new multi-purpose N-body code which is freely available under an open-source license. It was designed for collisio

nal

dynamics such as planetary rings but can also solve the classical N-body problem. It is highly modular and can be customized easily

to work on a wide variety of different problems in astrophysics and beyond.

RE
BO
UN
D comes with three symplectic integrators: leap-frog, the symplectic epicycle integrator (SEI) and a Wisdom-Holman mapping

(WH). It supports open, periodic and shearing-sheet boundary conditions. RE
BO
UN
D can use a Barnes-Hut tree to calculate both self-

gravity and collisio
ns. These modules are fully parallelized with MPI as well as OpenMP. The former makes use of a static domain

decomposition and a distrib
uted essential tree. Two new collisio

n detection modules based on a plane-sweep algorithm are also

implemented. The performance of the plane-sweep algorithm is superior to a tree code for simulations in which one dimension is

much longer than the other two and in simulations which are quasi-tw
o dimensional with less than one million particles.

In this work, we discuss the different algorithms implemented in RE
BO
UN
D, the philosophy behind the code’s structure as well as

implementation specific details of the different modules. We present results of accuracy and scaling tests which show that the code

can run efficiently on both desktop machines and large computing clusters.

Key words. Methods: numerical – Planets and satellites: rings – Proto-planetary disks

1. Intro
ductio

n

RE
BO
UN
D is a new open-source collisio

nal N-body code. This

code, and precursors of it, have already been used in wide variety

of publications (Rein & Papaloizou 2010; Crida et al. 2010; Rein

et al. 2010, Rein & Liu in preparation; Rein & Latter in prepa-

ration). We believe that REB
OU
ND

can be of great use for many

different problems and have a wide reach in astrophysics and

other disciplines. To our knowledge, there is currently no pub-

licly available code for collisio
nal dynamics capable of solving

the problems described in this paper. This is why we decided to

make it freely available under the open-source license GPLv31 .

Collisio
nal N-body simulations are extensively used in as-

trophysics. A classical application is a planetary ring (see

e.g. Wisdom & Tremaine 1988; Salo 1991; Richardson 1994;

Lewis & Stewart 2009; Rein & Papaloizou 2010; Michikoshi &

Kokubo 2011, and references therein) which have often a colli-

sion time-scale that is much shorter than or at least comparable

to an orbital time-scale. Self-gravity plays an important role, es-

pecially in the dense parts of Saturn’s rings (Schmidt et al. 2009).

These simulations are usually done in the shearing sheet approx-

imation (Hill 1878).

Collisio
ns are also important during planetesimal formation

(Johansen et al. 2007; Rein et al. 2010, Johansen et al. in prepa-

ration). Collisio
ns provide the dissipative mechanism to form a

planetesimal out of a gravitationally bound swarm of boulders.

1 The full license is distrib
uted together with RE

BO
UN
D. It can also be

downloaded from ht
tp
:/
/w
ww
.g
nu
.o
rg
/l
ic
en
se
s/
gp
l.
ht
ml

.

RE
BO
UN
D can also be used with little

modification in situa-

tions where only a statistic
al measure of the collisio

n frequency

is required such as in transitional and debris discs. In such sys-

tems, individual collisio
ns between particles are not modeled ex-

actly, but approximated by the use of super-particles (Stark &

Kuchner 2009; Lithwick & Chiang 2007).

Furthermore, REB
OU
ND

can be used to simulate classical N-

body problems involving entirely collisio
n-less systems. A sym-

plectic and mixed variable integrator can be used to follow the

trajectories of both test-particles and massive particles.

We describe the general structure of the code, how to ob-

tain, compile and run it in Sect. 2. The time-stepping scheme

and our implementation of symplectic integrators are described

in Sect. 3. The modules for gravity are described in Sect. 4. The

algorithms for collisio
n detection are discussed in Sect. 5. In

Sect. 6, we present results of accuracy tests for different mod-

ules. We discuss the efficiency of the parallelization with the help

of scaling tests in Sect. 7. We finally summarize in Sect. 8.

2. Overview of the code stru
cture

RE
BO
UN
D is written entirely in C and conforms to the ISO C99

standard. It compiles and runs on any modern computer platform

which supports the POSIX standard such as Linux, Unix and

Mac OSX. In its simplest form, REB
OU
ND

requires no external

libraries to compile.

Users are encouraged to install the OpenGL and GLUT li-

braries which enable real-tim
e and interactive 3D visualizations.

LIBPNG is required to automatically save screen-shots. The

1

•Multi-purpose N-body code

•Optimized for collisional dynamics

•Code description paper 
recently accepted by A&A

•Written in C, open source

• Freely available at
http://github.com/hannorein/rebound



REBOUND modules

Gravity
- Direct summation, O(N2)
- BH-Tree code, O(N log(N))
- FFT method, O(N log(N))

Collision detection
- Direct nearest neighbor search, O(N2)
- BH-Tree code, O(N log(N))
- Plane sweep algorithm, O(N) or O(N2)

Integrators
- Leap frog
- Symplectic Epicycle integrator (SEI)
- Wisdom-Holman mapping (WH)

Geometry
- Open boundary conditions
- Periodic boundary conditions
- Shearing sheet / Hill's approximation



REBOUND scalings using a tree
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Conclusions



Conclusions

Resonances and multi-planetary systems
Multi-planetary system provide insight in otherwise unobservable formation phase

GJ876 	

 	

 formed in the presence of a disc and dissipative forces
HD128311 	

 formed in a turbulent disc
HD45364 	

	

 formed in a massive disc
HD200964 	

 did not form at all

Moonlets in Saturn’s rings
Small scale version of the proto-planetary disc
Random walk can be directly observed
Caused by collisions and gravitational wakes

REBOUND
N-body code, optimized for collisional dynamics, uses symplectic integrators
Open source, freely available, very modular and easy to use
http://github.com/hannorein/rebound


