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Migration in a 
non-turbulent disc



Multi-planetary systems

planet + disc = migration

2 planets + migration = resonance

Lee & Peale 2002, Kley & Nelson 2008, Sandor et al 2007, Rein et al 2010



Migration - Type I

• Low mass planets

• No gap opening in disc

• Migration rate is fast

• Depends strongly on 
thermodynamics of the disc



Migration - Type II

• High mass planets

• Opens gap

• Follows viscous evolution of 
the disc
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Migration - Type III

• High mass disc

• Intermediate planet mass

• Very fast



Non-turbulent resonance capture: two planets

parameters of GJ 876

φ = 2λ1 − λ2 −�2



GJ 876

Lee & Peale 2002



Beta Pictoris



Beta Pictoris

• Debris disc

• Nearby star (19pc)

• Planet, aligned with 
disc

• Asymmetries in the 
disc



Non-turbulent resonance capture: dust

Rein & Brandeker (in preparation)



Non-turbulent resonance capture: dust

Rein & Brandeker (in preparation)



Beta Pictoris

Pantin et al 1997, Brandeker et al 2004, Rein & Brandeker (in prep)

684 A. Brandeker et al.: The spatial structure of the β Pictoris gas disk

First the lines were identified by correlating their measured
wavelengths with the atomic line database provided by NIST2.
This procedure was greatly simplified by the high accuracy of
the wavelength calibration, better than 0.5 km s−1, correspond-
ing to 0.01 Å at 6000 Å. A median systematic velocity was then
calculated for the brightest and most accurately measured emis-
sion lines, assuming all shared the same systematic radial ve-
locity. For the brightest lines, the measured flux as a function
of apertures centred on the systematic velocity was evaluated.
A large aperture samples more signal, but also more noise. We
were therefore interested in finding the best balance, in order to
achieve the highest signal to noise (S/N). The apertures used to
measure emission lines were consequently chosen as a function
of line strength and background noise, with smaller apertures
for fainter lines. We assumed that all lines from a particular ion
share the same spatio-spectral profile, and scaled the flux mea-
sured in small apertures of fainter lines with the ratio between
equally sized and maximum sized apertures placed on the sum
of several bright lines. In this way we estimated the signal from
a faint line without integrating up too much noise. The method
is analogous to methods used in aperture photometry to mea-
sure star fluxes in, e.g., a CCD image.

For the slits placed orthogonally to the disk, we summed
up all flux in the spatial direction, i.e. along the height of the
disk (Table 2). The quantity thus derived has the unit of flux
per arcsecond.

4. Results

We detected 88 spatially extended emission lines from the βPic
gas disk, identified as emission from Fe I, Na I, Ca II, Ni I, Ni II,
Ti I, Ti II, Cr I and Cr II. Table 2 shows a selection of the bright-
est lines. Following the brightest emission lines (S/N ∼ 50)
from Na I and Fe I radially (Figs. 2 and 3), we observe a
strong asymmetry between the north-east (NE) and the south-
west (SW) parts of the disk, similar to the brightness asym-
metry in the dust emission (Kalas & Jewitt 1995), but asym-
metric to a much higher degree. The NE gas emission extends
smoothly to the limits of our observations (17′′, corresponding
to 330 AU at the distance of βPic), whereas the SW emission
is abruptly truncated at 150–200 AU. In the inner regions, the
SW emission dominates over the NE part, in agreement with
Fig. 2 of Paper I.

Determining the centre of emission from the orthogonal
profiles, it becomes apparent that the inner part of the disk is
slightly tilted with respect to the outer parts, in particular on the
NE side (Fig. 4). We estimate this tilt to be 5◦±2◦ (1σ), similar
to the 4◦–5◦ tilt observed by HST/STIS in the inner dust disk
(Heap et al. 2000).

The scale height (FWHM) of the gas disk, estimated on
observations deconvolved with a Gaussian of 0.′′7 to simulate
the seeing, is ∼20 AU at 3′′ (58 AU), similar to the dust disk
scale height (Heap et al. 2000). At 6′′ (116 AU), however, the
gas disk is significantly thicker, ∼30 AU compared to ∼15 AU
for the dust (see Fig. 5).

2 http://physics.nist.gov

Fig. 2. Na D2 (λair = 5889.951 Å) emission from the β Pic disk, as seen
through four slits parallel to the disk (see Fig. 1). The vertical axis
is along the spatial direction, with positive offsets north-east of the
star, while the spectral dispersion is along the horizontal axis, centred
on the βPic rest frame of the Na D2 line. The inner 11 AU, showing
mostly residual noise from the PSF subtraction, have been masked out.
The velocity shift of the NE and SW side is due to Keplerian rotation
of the disk, with the SW rotating towards us (Paper I). The grey scale
has been scaled non-linearly with the intensity, in order to bring out
the bright disk structure close to the star as well as the faint features
at greater distances. The emission in the NE can be traced out to the
limits of our observations at 323 AU, while the emission in the SW
ends abruptly at 150–200 AU (see also Fig. 3). Close to −25 km s−1,
telluric Na D2 emission is seen covering the slit. The relative velocity
of the sky emission to β Pic varies slightly between the mosaiced ob-
servations due to the orbital motion of the Earth between the epochs.
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Hanno Rein: β Pictoris, test particle simulations
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HD 45364



HD45364
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Observations Correia et al

Correia et al 2009, Visual Exoplanet Catalogue



Formation scenario

• Two migrating planets

• Infinite number of 
resonances

• Migration speed is crucial

• Resonance width and 
libration period define 
critical migration 
rate

Rein, Papaloizou & Kley 2010

1:
2

3:2
1:3

1:4 7:8

H. Rein et al.: The dynamical origin of HD 45364
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Fig. 2. The semi-major axes (top), period ratio P2/P1 (middle), and ec-
centricities (bottom) of the two planets plotted as a function of time in
dimensionless units for run F5 with a disc aspect ratio of h = 0.07. In
the bottom panel, the upper curve corresponds to the inner planet.
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Fig. 3. A surface-density contour plot for simulation F5 after 100 orbits
at the end of the type III migration phase. The outer planet establishes
a definite gap, while the inner planet remains embedded at the edge of
the outer planet’s gap.

similar properties to those described above when making com-
parisons with observations.

It is possible that the solid cores of either both planets or just
the outer planet approached the inner planet more closely than
the 2:1 commensurability before entering the rapid gas accre-
tion phase and attaining their final masses prior to entering the
3:2 commensurability. Although it is difficult to rule out such
possibilities entirely, we note that the cores would be expected
to be in the super earth mass range, where in general closer
commensurabilities than 2:1 and even 3:2 are found for typical
type I migration rates (e.g. Papaloizou & Szuszkiewicz 2005;
Cresswell & Nelson 2008). One may also envisage the possibil-
ity that the solid cores grew in situ in a 3:2 commensurability, but
this would have to survive expected strongly varying migration
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Fig. 4. The semi-major axes (top), period ratio P2/P1 (middle), and ec-
centricities (bottom) of the two planets plotted as a function of time in
dimensionless units for run F4 with a disc aspect ratio of h = 0.04. In
the bottom panel, the upper curve corresponds to the inner planet.
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Fig. 5. A surface-density contour plot for simulation F4 after 150 orbits
after the planets went into divergent migration. The inner planet is em-
bedded and interacts strongly with the inner disc. The simulation uses
a 1D grid for 0.04 < r < 0.25.

rates as a result of disc planet interactions as the planets grew
in mass.

An issue is whether the embedded inner planet is in a rapid
accretion phase. The onset of the rapid accretion phase (also
called phase 3) occurs when the core and envelope mass are
about equal (Pollack et al. 1996). The total planet mass depends
at this stage on the boundary conditions, here determined by
the circumplanetary flow. When these allow the planet to have a
significant convective envelope, the transition to rapid accretion
may not occur until the planet mass exceeds 60 M⊕ (Wuchterl
1993), which is the mass of the inner planet (see also model J3
of Pollack et al. 1996; and models of Papaloizou & Terquem
1999). Because of the above results, it is reasonable that the in-
ner planet is not in a rapid accretion phase.

Page 5 of 8



Formation scenario for HD45364

Massive disc (5 times MMSN)

• Short, rapid Type III migration 

• Passage of 2:1 resonance

• Capture into 3:2 resonance

Rein, Papaloizou & Kley 2010

Large scale-height (0.07)

• Slow Type I migration once in resonance

• Resonance is stable

• Consistent with radiation hydrodynamics



Formation scenario leads to a better ‘fit’
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Migration in a turbulent disc



Turbulent disc

• Angular momentum 
transport

• Magnetorotational 
instability (MRI)

• Density perturbations 
interact gravitationally 
with planets

• Stochastic forces lead to 
random walk

• Large uncertainties in 
strength of forces

Animation from Nelson & Papaloizou 2004
Random forces measured by Laughlin et al. 2004, Nelson 2005, Oischi et al. 2007



Random walk

Rein & Papaloizou 2009

pericenter

eccentricity

semi-major axis

time



Correction factors are important

(∆a)2 = 4
Dt

n2

(∆e)2 = 2.5
γDt

n2a2

Rein & Papaloizou 2009,  Adams et al 2009, Rein 2010
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Two planets: turbulent resonance capture

Rein & Papaloizou 2009



Multi-planetary systems in mean motion resonance

• Stability of multi-planetary systems depends strongly on 
diffusion coefficient 

• Most planetary systems are stable for entire disc lifetime

Rein & Papaloizou 2009

GJ876

Earth



but



Modification of libration patterns

Rein & Papaloizou 2009

• HD128311 has a very 
peculiar libration pattern

• Can not be reproduced by 
convergent migration alone

• Turbulence can explain it

• More multi-planetary 
systems needed for 
statistical argument



Moonlets in Saturn's Rings
  I. Observations



Cassini spacecraft

NASA/JPL/Space Science Institute



• Propeller is wake of an 
unresolved moon

• Size ~50m-1km

• Most propellers found within 
1000km

• Origins unclear

• Dynamical evolution can be 
observed directly

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006



Observational evidence of non-Keplerian motion

4

Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).

Table 1
Orbit fits for trans-Encke propellers

Longitude Rms deviation

Nickname n,
◦
/day

a a, km
a

at epoch
b

# images
c

Time interval in km in longitude

Earhart 624.529897(2) 133797.8401(3) 57.85
◦

3 2006–2009 (2.7 yr) 730 0.31
◦

Post 624.4867(3) 133803.99(4) 58.09
◦

3 2006–2008 (1.7 yr) 12 0.01
◦

Sikorsky 623.917736(1) 133885.0475(2) 70.37
◦

3 2005–2008 (3.1 yr) 230 0.10
◦

Curtiss 623.7473 133909.36 210.04
◦

2 2006–2008 (1.7 yr)

Lindbergh 623.3176(2) 133970.69(2) 112.08
◦

3 2005–2008 (3.0 yr) 71 0.03
◦

Wright 622.5527 134080.03 251.85
◦

2 2005–2006 (1.3 yr)

Kingsford Smith 620.761649(2) 134336.9350(3) 202.44
◦

4 2005–2008 (2.9 yr) 670 0.28
◦

Hinkler 619.80519(1) 134474.639(2) 58.85
◦

3 2006–2008 (1.3 yr) 360 0.15
◦

Santos-Dumont 619.458729(1) 134524.6067(2) 324.11
◦

9 2005–2009 (4.3 yr) 670 0.28
◦

Richthofen 617.7011 134778.83 122.90
◦

2 2006–2007 (0.3 yr)

Blériot 616.7819329(6) 134912.24521(8) 193.65
◦

89 2005–2009 (4.2 yr) 210 0.09
◦

a
Formal error estimates, shown in parentheses for the last digit, are for the best-fit linear trend in longitude. They are

much smaller than the rms deviations in longitude, given in the right-hand column.

b
Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.

c
Not including images of insufficient quality to include in the orbit fit.

clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is

both long-lived and reasonably well-characterized by a

keplerian path. As Fig. 4 shows, a linear fit to the lon-

gitude with time (corresponding to a circular orbit) re-

sults in residuals of ±300 km (0.13
◦

longitude). How-

Tiscareno et al. 2010



Longitude residual
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Keplerian rotation: linear
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Constant migration rate: quadratic
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Resonance:  sine-curve
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Random walk

n�(t) =
� t

0
F (t�) dt� �F (t)� = 0

Rein and Papaloizou 2010
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Observational evidence of non-Keplerian motion
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Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).
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Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.

c
Not including images of insufficient quality to include in the orbit fit.

clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is

both long-lived and reasonably well-characterized by a

keplerian path. As Fig. 4 shows, a linear fit to the lon-

gitude with time (corresponding to a circular orbit) re-

sults in residuals of ±300 km (0.13
◦

longitude). How-

Tiscareno et al. 2010



Moonlets in Saturn's Rings
  II. Explanations for 
  non-Keplerian motion



Resonance with a moon

Tiscareno et al. 2010

PRO
• Produces sine-shaped 

residual longitude 

• Amplitude is a free 
parameter

CONTRA
• No resonance found

• Cannot fully explain 
shape of observations

• Other moonlets seem 
to migrate as well



Modified Type I migration

• Due to curvature (would
 be zero in shearing sheet)

• Similar to planetary 
migration in a gas disc

• No gas pressure

• Migration rate can be calculated analytically
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Figure 1. Trajectories of test particles perturbed by a moonlet of mass
m = 3 × 10−12M , located at (r = rm,φ = 0) (that is at (0, 1) in the plot), in
the frame corotating with the moonlet. Dashed circle: orbit of the moonlet.

m = 3 × 10−12M , starting the particle at an azimuth |φ0| =
3000 rH /rm = 0.3 (where the moonlet is at φ = 0). This angle is
large enough so that at this location the influence of the moonlet
is negligible and the orbital parameters of the test particle are not
disturbed, as will be checked later. We find that the horseshoe
regime occurs for b̂ < 1.8 and the scattered regime occurs
for b̂ > 2.5. For 1.774 < b̂ < 2.503, however, the trajectory
approaches the center of the moonlet to within a distance smaller
than 0.95 rH . In that case, if one assumes the moonlet is a point
mass, the test particle eventually leaves the Hill sphere, either on
a horseshoe or a circulating trajectory, but the outcome changes
several times with increasing b̂. In the case we are concerned
about here, the moonlet most likely almost fills its Roche lobe,
and therefore we stop the integration of the trajectory as soon
as the distance between the test particle and the moonlet is less
than 0.95 rH , assuming a collision.

The specific orbital angular momentum J = r2(dφ/dt) of
the test particles is computed along the trajectories. Angular
momentum is exchanged during the close encounter with the
moonlet. For b̂ ! 2.503, the test particle is scattered onto an
eccentric orbit of larger angular momentum than the initial one,
which results in a gain in angular momentum. The variation
of orbital angular momentum along the trajectory is shown in
the bottom panel of Figure 2 for the case b̂ = 3, where the
top panel is the trajectory. The difference in angular momentum
between the initial circular orbit at φ0 = 0.3 sgn(b) and the
end of the integration, when |φ| = 0.3 again, is noted ∆J . In
the figure, only the interval −0.05 < φ < 0.05 is displayed
for convenience. Most of the exchange of angular momentum
occurs when |φ| < 0.01.

Figure 3 shows |∆J | (top thick curve) as a function of b̂,
in units of the specific angular momentum of the moonlet
Jm = r2

mω. For 0 < b̂ " 1.774, the horseshoe trajectory
corresponds to a U-turn toward the central planet, and to a
loss of angular momentum for the test particle. More precisely,
as for circular orbits J ∝ r1/2, one expects for such a U-turn
∆J/J = 1

2
∆r
r

= −b/rm; this is indeed the case for b̂ < 1.3.
In the case where the test particle collides with the moonlet,
we assume that it gives all its orbital angular momentum to the
moonlet: ∆J = r 2

0 Ω − Jm, so that ∆J/J ≈ b/(2rm). This also
appears in Figure 3. The opposite holds for b < 0.

Computing ∆J as a function of b to numerical precision
enables us to also compute the difference between the inner and
outer disk: δJ (b) = ∆J (b) + ∆J (−b). This quantity is small
with respect to ∆J (b), but nonetheless well determined and
converged in our simulations: ∆J (b) + ∆J (−b) is constant after
the encounter to a precision better than 0.5% for all |φ| > 0.02.
This validates our choice of φ0. In Figure 3, the bottom thick
dashed curve shows δJ in the same scale as |∆J |. We see that
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Figure 2. Top panel: trajectory of a test particle with impact parameter b̂ = 3;
the motion of the particle is toward negative φ. Bottom panel: variation of the
specific orbital angular momentum J of the same particle along its trajectory.
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Figure 3. Angular momentum exchanges during one close encounter as a
function of the impact parameter. Top, thick, red curve: ∆J (b̂), from numerical
simulations. Green, thin, dashed, straight line: ∆J (b̂), as given by Equation (32).
Bottom, thick, dark blue, long-dashed curve: δJ (b̂), from numerical simulations.
Thin, light blue, dash-dotted line: δJ (b̂) as given by Equation (34), taking ∆J
from the simulations. Yellow, thin, double- and triple-dashed lines: (b/rm)Jm,
and (b/2rm)Jm, respectively, to compare with |∆J |.

δJ > 0 for all b > 0 and that δJ % ∆J , with

δJ/∆J ≈ 5 × 10−4 b̂ (4)

for circulating trajectories, and

δJ/|∆J | ≈ 1.17 × 10−4 b̂

for horseshoe orbits. In the following subsection, the empirically
found Equation (4) is analytically derived and justified.

3.2. Analytic Model for the Ring–Moonlet Interaction

In this section, we consider only circulating trajectories.
Developing the exchange of angular momentum during an
encounter with the moonlet ∆J to second order, we can find
the asymmetry δJ .

3.2.1. Solution for the Perturbed Moonlet Orbit

Let us start again from Equations (2) and (3). The ring particle
is assumed to be on an unperturbed circular orbit of radius
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Accordingly, we evaluate the difference in the magnitude of ∆J
evaluated from orbits equidistant from the moonlet: r0 = rm ± b.
The leading order contribution to ∆J is symmetric in b. The
lowest order contribution is antisymmetric and accordingly
leads to cancellation between the two sides. We make use of the
expansions ξ0 = 2/3−b/(2rm)+O((b/rm)2) and 2Ω/(Ω−ω) =
−4rm/(3b)(1 − b/(4rm)) + O(b/rm) together with standard
properties of Bessel functions to write

∆J = 64(Gm)2rm

243ω3b5
(2K0(2/3) + K1(2/3))2

(
1 + α

b

rm

)
, (32)

where

α = 3
4

+
(6K1(2/3) + 3K0(2/3))
(4K0(2/3) + 2K1(2/3)

= 2.46. (33)

The first-order term of Equation (32) was already given by
Goldreich & Tremaine (1980). It is plotted as a straight green
dashed line in Figure 3. Our expansion to second order enables
us to go further, and to give the expression of the magnitude of
the asymmetry between the two sides of the disk:

δJ

∆J
= 2α|b|/rm = 4.92|b|/rm. (34)

It is such that for an orbit with a given impact parameter, the
angular momentum exchanged in the outer disk is the larger
one.

In the case studied numerically, we had rH = 10−4, so that
|b|/rm = 10−4b̂. Then, Equation (34) remarkably agrees with
the numerical fit (Equation (4)). The light blue dot-dashed curve
in Figure 3 displays 4.92 × 10−4 b̂ ∆J .

In the context of the above, we note that approximations
made in obtaining Equation (31) such as effectively starting and
truncating the interaction at some finite though large distance
from the moonlet could conceivably lead to changes comparable
to those given by Equation (34). However, such changes are
again approximately symmetric for trajectories on both sides of
the moonlet and thus approximately cancel so we do not expect
such effects to significantly alter Equation (34).

3.3. Migration Rate and Discussion

If the surface density of ring particles is Σ, the total rate of
angular momentum transferred to the moonlet is

dJ

dt
= −

∫ ∫

disk
Σ ∆J

|ω − Ω|
2π

dr rdφ, (35)

where the integral is taken over the disk. The particles exterior
to the moonlet contribute negatively while those interior to the
moonlet contribute positively. The cumulative torque exerted by
the moonlet on the region of the ring located within a distance
b to its orbit then reads

Tc(b) =
∫ b

−b

Σ(rm + b′)(∆J (b′))|ω − Ω|db′. (36)

The normalized cumulative torque

Tc(b)
/[

(m/M)4/3(Σ/Mr −2
m

)]

is plotted in Figure 4. The proportionality to Σ is obvious; that
Tc ∝ (m/M)4/3 is numerically verified for 3×10−15 ! m/M !
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Figure 4. Cumulative torque given by Equation (36) exerted by a moonlet on
the region of the ring rm − b < r < rm + b.

3 × 10−9, and has been already found analytically by Ward
(1991) for the horseshoe drag in a similar context.

Most of the total torque comes from scattered, circulating par-
ticles, in particular the ones with the smallest impact parameter
b̂ ≈ 2.5. This makes the total torque sensitive to the physical
size of the moonlet (taken as 0.95 rH here), as some particles
colliding with the moonlet could be circulating if it were smaller.

The role of the horseshoe drag appears to be non-negligible,
amounting to ∼4.1(Σ/Mr −2

m )(m/M)4/3 Mr 2
m ω2. The expres-

sion of Ward (1991) for the torque arising from material execut-
ing horseshoe turns, called the horseshoe drag, is for a Keplerian
disk with a flat density profile:

THS = 9
8

Σw4ω2, (37)

where w is the half-width of the horseshoe region.
In our case, w = 1.774 rH , which gives THS =
2.6 (Σ/Mr −2

m )(m/M)4/3Mr 2
m ω2. The agreement is good be-

cause Ward’s analysis is based only on geometrical effects and
angular momentum variation in a Keplerian disk, without any
pressure effect. Therefore, it also applies in Saturn’s ring. We
remark that taking w = 2rH in Equation (37) gives a perfect
match with what we find numerically for the total horseshoe
drag.

In conclusion, from Figure 4, the total torque felt by a moonlet
of mass m on a circular orbit of radius rm around a planet of
mass M can be written as

T = −17.8
(

Σ
Mr −2

m

)( m

M

)4/3
Mr 2

m ω2. (38)

Note that to get the same dependency of the type I torque in
the parameters of the system, one has to assume h ∝ rH /rm

in Equation (1); however, in a protoplanetary disk, h is fixed
and independent of the mass of the secondary body, so that this
proportionality would not be justified.

The torque is related to the migration speed through T =
0.5 m rmΩ(drm/dt). Hence we deduce that

drm

dt
= −35.6

Σr 2
m

M

( m

M

)1/3
rmΩ. (39)

Here the migration rate is proportional to the mass of the moonlet
to the power 1/3, in contrast to standard type I migration



Modified Type I migration

Crida et al. 2010

PRO
• Robust 

• Would be a direct 
observation of type I 
migration

CONTRA
• Tiny migration rate

~20 cm/year

• Cannot explain shape of 
observations



Frog resonance

Pan & Chiang 2010

Propeller
Saturn

co-orbital mass

co-orbital mass



Frog resonance

Pan & Chiang 2010

PRO
• Predicts largest

period very well

• Amplitude is a free 
parameter

CONTRA
• Unclear if density 

distribution is like in the 
toy model 

• Cannot fully explain 
shape of observations



Random walk

Rein & Papaloizou 2010, Crida et al 2010



Two different approaches

Analytic model
Describing evolution in a statistical manner
Partly based on Rein & Papaloizou 2009

N-body simulations
Measuring random forces or integrating moonlet directly
Crida et al 2010, Rein & Papaloizou 2010

∆a =
�

4
Dt

n2

∆e =
�

2.5
γDt

n2a2

Rein & Papaloizou 2010, Crida et al 2010



Effects contributing to the eccentricity evolution 

Laminar collisions

Particles colliding

Laminar circulating 

Laminar horseshoe

Particles circulating

Clumps circulating

Damping Excitation

Equilibrium
eccentricity

Rein & Papaloizou 2010, Crida et al 2010



... semi-major axis evolution 

Particles colliding

Particles horseshoe

Particles circulating

Clumps circulating

Damping Excitation

Random walk 
in semi-major 
axis
+Net “Type I” migration

Rein & Papaloizou 2010, Crida et al 2010



Random walk

PRO
• Can explain the shape 

of the observations 
very well

CONTRA
• Has only been tested 

numerically for small 
moonlets 

• No metric to test how 
good it matches the 
observations

Rein & Papaloizou 2010, Liu & Rein (in prep)



Hybrid Type I migration / stochastic kicks

Tiscareno (in prep)

δΣ/Σ ∼ 3% Type I

Kick

Type I



Hybrid Type I migration / stochastic kicks

PRO
• Can explain all 

observations very well

CONTRA
• Many free parameters: 

surface density profile, 
kicks

• Needs large kicks
 (maybe not)

Tiscareno (in prep)



Need a metric

4

Figure 4. Observed longitude of the propeller “Blériot” over 4 years, with a linear trend (616.7819329◦/day) subtracted off. Only data
points with measurement errors σ < 0.01◦ are shown. Error bars (1-sigma) are given, but in many cases are smaller than the plotting
symbol. Panel (a) shows all the data, while panels (b), (c), and (d) contain subsets of the data shown in greater detail. The residuals
to the linear trend (horizontal dotted line) are less than ±300 km, but are clearly not randomly distributed. The dotted line indicates a
linear-plus-sinusoidal fit to all the data, with an amplitude of 0.11◦ and a period of 3.68 yr. The solid lines indicate piecewise quadratic
fits, corresponding to a constant drift in semimajor axis; in particular, the data from mid-2006 to early-2007 (panel c) are fit by a linear
trend with a constant acceleration of -0.0096��/day2 (ȧ = +0.11 km/yr), while the data from late-2007 to early-2009 (panel d) are fit by a
linear trend with a constant acceleration of +0.0023��/day2 (ȧ = −0.04 km/yr).

Table 1
Orbit fits for trans-Encke propellers

Longitude Rms deviation

Nickname n,
◦
/day

a a, km
a

at epoch
b

# images
c

Time interval in km in longitude

Earhart 624.529897(2) 133797.8401(3) 57.85
◦

3 2006–2009 (2.7 yr) 730 0.31
◦

Post 624.4867(3) 133803.99(4) 58.09
◦

3 2006–2008 (1.7 yr) 12 0.01
◦

Sikorsky 623.917736(1) 133885.0475(2) 70.37
◦

3 2005–2008 (3.1 yr) 230 0.10
◦

Curtiss 623.7473 133909.36 210.04
◦

2 2006–2008 (1.7 yr)

Lindbergh 623.3176(2) 133970.69(2) 112.08
◦

3 2005–2008 (3.0 yr) 71 0.03
◦

Wright 622.5527 134080.03 251.85
◦

2 2005–2006 (1.3 yr)

Kingsford Smith 620.761649(2) 134336.9350(3) 202.44
◦

4 2005–2008 (2.9 yr) 670 0.28
◦

Hinkler 619.80519(1) 134474.639(2) 58.85
◦

3 2006–2008 (1.3 yr) 360 0.15
◦

Santos-Dumont 619.458729(1) 134524.6067(2) 324.11
◦

9 2005–2009 (4.3 yr) 670 0.28
◦

Richthofen 617.7011 134778.83 122.90
◦

2 2006–2007 (0.3 yr)

Blériot 616.7819329(6) 134912.24521(8) 193.65
◦

89 2005–2009 (4.2 yr) 210 0.09
◦

a
Formal error estimates, shown in parentheses for the last digit, are for the best-fit linear trend in longitude. They are

much smaller than the rms deviations in longitude, given in the right-hand column.

b
Epoch is 2007 January 1 at 12:00:00 UTC (JD 1782806.0). All orbit fits assume e = 0 and i = 0.

c
Not including images of insufficient quality to include in the orbit fit.

clusively proven) that giant propellers are missing in the

Propeller Belts. Even the largest propellers observed in

the Propeller Belts have ∆r < 1.3 km (Tiscareno et al.

2008), while nearly all observed trans-Encke propellers

have ∆r larger than this value (Fig. 2).

3. THE ORBITAL EVOLUTION OF “BLÉRIOT”

At least 11 propellers have been seen at multiple

widely-separated instances, but “Blériot” is of particu-

lar interest as the largest and most frequently detected

(Figs. 1b, 1c, 1d, 1e, and 1h). It has appeared in more

than one hundred separate Cassini ISS images span-

ning a period of four years, and was serendipitously

detected once in a stellar occultation observed by the

Cassini UVIS instrument (Colwell et al. 2008, 2010).

Analysis of the orbit of “Blériot” confirms that it is

both long-lived and reasonably well-characterized by a

keplerian path. As Fig. 4 shows, a linear fit to the lon-

gitude with time (corresponding to a circular orbit) re-

sults in residuals of ±300 km (0.13
◦

longitude). How-
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Conclusions



Conclusions

Resonances and multi-planetary systems
Multi-planetary system provide insight in otherwise unobservable formation phase
Overwhelming evidence that dissipative effects (disc) shaped many systems
Turbulence can be traced by observing orbits of multi-planetary systems
Need precise orbital parameters to do that 
Kepler data is not good enough
Distinctive from non-turbulent migration scenarios, clear signal
HD45364 formed in a massive disc

Moonlets in Saturn’s rings
Small scale version of the proto-planetary disc
Dynamical evolution can be directly observed
Evolution is most likely dominated by random-walk
Caused by collisions and gravitational wakes
Might lead to independent age estimate of the ring system



REBOUND
A new open source collisional N-body code

http://github.com/hannorein/rebound


