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1 Theory

1.1 Derivation of the Schwarzschild Metric

We want to derive a spherical symmetric metric. As a starting point we choose the metric to be

ds2 = g00(r, t)c2dt2 + grr(r, t)dr2 + r2(dΘ2 + sin2 Θdφ2). (1)

Hence we are looking for two unknown scalar functions, namely g00 and grr. For the following calculation we define

−eν = g00 = (g00)−1 and eρ = grr = (grr)−1.

To get the unknown functions we have to solve the Einstein Field Equations. Therefore we need the Christoffel
Symbols

Γi
km =

1
2
gin(gkn,m + gmn,k − gkm,n).

Where “, k” denotes the partial derivative. In general it is very hard to calculate these symbols, because for each
combination of i, k and m we have to calculate 12 derivatives of the metric tensors. But there is another, more
efficient way to get them, which we will discuss now.

The Geodesic Equation describes the motion of a particle and is given by

dxµ

dσ2
+ Γµ

νλ

dxν

dσ

dxµ

dσ
= 0. (2)

But the Euler-Lagrange Equation

d
dσ

∂L

∂ẋµ
− ∂L

∂xµ
= 0 (3)

does the same. We choose the Lagrangian L to be

L =
1
2
gµν

dxµ

dσ

dxν

dσ
(4)

=
1
2

[
−eν

(
dx0

dσ

)2

+ eρ

(
dr

dσ

)2

+ r2

(
dΘ
dσ

)2

+ r2 sin2 Θ
(

dφ

dσ

)2
]

(5)

The idea is to compare the Geodesic Equation (2) and the Euler-Lagrange Equation (3) to read of the Christoffel
Symbols Γi

km. We’ll do this just for µ = 0 in the Euler Lagrange Equation, but the calculation is very similar in the
other cases. This turns out to be

∂L

∂x0
=

1
2

[
−ν̇eν

(
dx0

dσ

)2

+ ρ̇eρ

(
dr

dσ

)2
]

(6)

∂L

∂ẋ0
= −eν dx0

dσ
. (7)

And hence we get

0 = −eν

d2x0

dσ2
+ v′︸︷︷︸

=2Γ0
r0

dr

dσ

dx0

dσ
−1

2
v̇︸︷︷︸

=Γ0
00

(
dx0

dσ

)2

+
1
2
ρ̇eρ−ν︸ ︷︷ ︸
Γ0

rr

(
dr

dσ

)2

 . (8)
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Now we can calculate the components of the Ricci tensor

R00 = −
(

ν′′

2
+

ν′2

4
− ν′ρ′

4
+

ν′

r

)
eν−µ +

(
ρ̈

2
+

ρ̇2

4
− ν̇ρ̇

4

)
(9)

Rrr =
(

ν′′

2
+

ν′2

4
− ν′ρ′

4
− ρ′

r

)
−

(
ρ̈

2
+

ρ̇2

4
− ν̇ρ̇

4

)
eρ−ν (10)

R0r = − ρ̇

r
(11)

RΘΘ =
[
1 +

r

2
(ν′ − ρ′)

]
e−ρ − 1 (12)

Rφφ = sin2 Θ ·RΘΘ (13)

Outside the source the Einstein Field Equations imply

Rµν = 0. (14)

We only consider static solutions. Hence ν̇ = ρ̇ = ρ̈ = 0. It turns out that the solution is always static in a spherical
symmetric vacuum solution to Rµν = 0. This is known as the Birkhoff theorem, see [Che05].
Finally we have to solve

0 = R00 =
ν′′

2
+

ν′2

4
− ν′ρ′

4
+

ν′

r
(15)

0 = eρ−νR00 + Rrr = ν′ + ρ′ (16)

0 = RΘΘ =
[
1 +

r

2
(ν′ − ρ′)

]
e−ρ − 1 (17)

Note that there are only two independent equations for 2 functions. One equation is redundant, so we will only solve
(16) and (17). After integrating over r, (16) gives

ρ(r) = −ν(r)

⇒ −g00 =
1

grr

We insert this into (17)

(1− rρ′)e−ρ − 1 = 0

and define λ(r) = e−ρ. Hence

λ′ +
1
r
λ =

1
r

The solution for this equation is

λ = 1− r?

r
=

1
grr

= −g00.

Where r? is a constant. So we have finally derived the Schwarzschild metric

gµν =


−1 + r?

r 0 0 0

0
(
1− r?

r

)−1

0 0
0 0 r2 0
0 0 0 r2 sin2 Θ

 (18)
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1.2 Motion of a test particle

The motion of a test particle is described by the geodesic equation (3). With the metric (18) the Lagrangian is given
by

L =
(

ds

dτ

)2

= gµν ẋµẋν (19)

=
(
−1 +

r?

r

)
c2ṫ2 +

(
1− r?

r

)−1

ṙ2 + r2φ̇2 + r2Θ̇2 = −c2 (20)

In the last line we restricted the motion wlog to the Θ = π
2 plane. Because the Lagrangian (20) does not depend on

t and φ the two quantities

∂L

∂φ̇
= 2r2φ̇ ≡ λ

∂L

∂ṫ
= −2

(
1− r?

r

)
c2ṫ ≡ −2c2η

are conserved. Hence, the Lagrangian (20) can be rewritten in terms of λ and η

−c2 1
2
m

(
1− r?

r

)
= −c2η2 m

2
+

ṙ

2
m +

λ2

r2

1
8
m

(
1− r?

r

)
.

We define

λ2

4
=

l2

m2

η2 − 1
2

≡ K

mc2
r? ≡ 2GM

c2

and get

K =
1
2
mṙ2 +

(
1− r?

r

)
l2

2mr2
− GmM

r
.

We identify K as the total (Newtonian) energy of the system and write K as a sum of the kinetic and effective
potential energy

K =
1
2
mṙ2 + mΦeff

with

Φeff = −GM

r
+

l2

2m2r2
− r?l2

2m2r3
. (21)

The first term is the well known Newtonian Potential of a pointmass with mass M . The second term is just the
rotational energy. But the last term is a new, relativistic effect. It is a r−3 correction to the Newtonian Potential.
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2 Simulations and Observations

2.1 Newtonian Potential

In the Newtonian Limit we ignore the r−3 term in the potential (21). In Figure 1 you can see that there exists a
stable orbit. The solutions are circles and ellipses as shown in Figure 2 and 3.

Figure 1: Newtonian Potential of a point mass for a constant l

Figure 2: Simulation of a test particle moving in a Newtonian Potential
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Figure 3: Simulation of many test particles moving in a Newtonian Potential

2.2 Schwarzschild Potential

If we add the r−3 term to the potential (21), it looks nearly the same at large scales, but it looks much different
at small scales where the new term dominates. The asymptotic behavior changed from limr→0 Φeff → ∞ to
limr→0 Φeff → −∞. (See Figure 4).

Figure 4: Schwarzschild Potential of a point mass for a constant l

Again, we can simulate the motion of a test particle in the new potential. The result is shown in Figure 5. You can
see that the orbit isn’t an ellipse anymore. The orbit’s periastron gets shifted after each revolution.
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Figure 5: Simulation of a test particle moving in a Schwarzschild Potential. The aphelions of the last 6 revolutions
are marked with a green circle.

We can measure the orbit of stars very close to the galactic center (see Figure 6). If there is a massive black hole, we
may see this relativistic effect in the orbital motion. But the shift drawn in Figure 6 is due to the pure Newtonian
effect of an extended mass distribution around the black hole (see Figure 7). This effect is much bigger than the
relativistic one. However, I might be possible to detect the relativistic effect in the near future.

Figure 6: Orbit of the star S2 around the galactic center [NM05]
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Figure 7: Simulations of the S2-orbit around the galactic center [GFR01]. The parameter λp corresponds to the
mass fraction that is inside the back hole compared to that outside.

Another relativistic effect is the last stable orbit. In the Newtonian case, the orbit can be as small as the source is
large, but this is not true in the relativistic case. As you can see in Figure 8 there exists no stable orbit anymore if
l is to small. The result is an area of space that is free of any orbiting particles, because every particle has either
fallen into the black hole or escaped the attraction. (see Figure 9)

Figure 8: Schwarzschild Potential of a point mass for a constant and small l
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Figure 9: Simulation of many test particles moving in a Schwarzschild Potential. Inside some area, there is no stable
orbit.
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[NM05] S. Pfalzner R. Schödel. J. Moultaka R. Spurzem N. Mouawad, A. Eckart. Weighing the cusp at the galactic
centre. Astronomische Nachrichten, 326:83–95, 2005.


