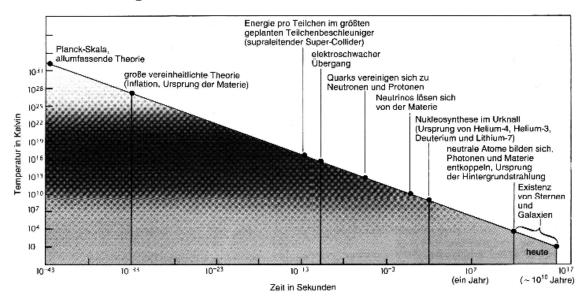
Nukleosynthese im Urknall

Hanno Rein

27. Januar 2005

Georges-Henri Lemaître (1895-1966)


Auf einem stark abgekühlten Aschehaufen stehend, beobachten wir das allmähliche Verlöschen der Sonnen, und wir versuchen uns des entschwundenen Glanzes des Ursprungs der Welten zu erinnern.

Gliederung

1	Motivation	2								
	1.1 Einordnung									
	1.2 Bestätigung der Urknalltheorie									
	1.3 Vorhersagen									
2	Theorie	;								
	2.1 Neutronen und Protonen	;								
	2.2 Leichte Elemente	4								
	2.3 Metalle									
	2.4 Parameter									
3	Neutrinoflavours									
	3.1 CERN									
	3.2 BBN									
4	Beobachtungen									
	4.1 ⁴ He									
	4.2 Deuterium									
	4.3 ⁷ Li									
5	ergleich Rechnungen/Beobachtungen									
6	Literatur	10								

1 Motivation

1.1 Einordnung

1.2 Bestätigung der Urknalltheorie

- Sternenlicht reicht nicht aus um ⁴He zu bilden
- Freigesetzte Energie pro ⁴He: 27 MeV
- \bullet Masse ${}^4{\rm He}{}$: 3728 MeV

•

$$\frac{\rho_*}{\rho_{He}} = \frac{27}{3728} \qquad \frac{\rho_*}{\rho_m} = \frac{1}{4} \frac{27}{3728} \approx 2 \cdot 10^{-3}$$

• Beobachtungen:

$$\frac{\rho_*}{\rho_m} \approx 3 \cdot 10^{-5}$$

1.3 Vorhersagen

- Test der Kosmologie und Teilchenphysik
 - Neutrinoflavours
 - Starke Wechselwirkung
 - Elektromagnetische Wechselwirkung
 - Schwache Wechselwirkung
- Baryonendichte
- Temperatur Hintergrundstrahlung

2 Theorie

2.1 Neutronen und Protonen

Thermisches Gleichgewicht

$$T \ge 10^{10} \text{K} = 1 \text{MeV}$$

• Neutronen und Protonen im Gleichgewicht:

$$\frac{N_n}{N_p} = \exp\left(-c^2 \frac{m_n - m_p}{k_B T}\right)$$

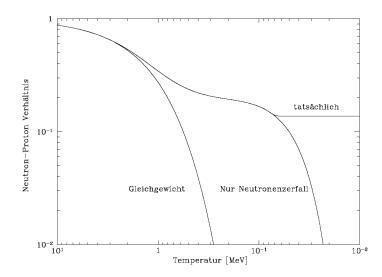
- $c^2(m_n m_p) = 1.293 \text{MeV}$
- Gleichgewichtsreaktionen:

$$p + e^{-} \leftrightarrow n + \nu_e$$
$$n + e^{+} \leftrightarrow p + \bar{\nu}_e$$

Entkopplung der Neutrinos

 $T\approx 0.8 \mathrm{MeV}$

- Dichte gering
- keine Wechselwirkungen mit Neutrinos mehr
- $\bullet\,$ Verhältnis ist


$$\frac{N_n}{N_p} = \frac{1}{6}$$

 \bullet Neutronenzerfall findet unabhängig von T statt:

$$n \to p + e^- + \bar{\nu}_e$$
$$\tau_n = 889 \pm 2s$$

• Halbwertszeit entscheidender Faktor

Neutronenzerfall

2.2 Leichte Elemente

Deuterium Produktion

t > 100s:

$$n+p \rightleftharpoons D+\gamma$$

- wenig Photonen mit E > 2.2 MeV
- keine Photodisintegration mehr

Gamow Kriterium (1946)

- Deuterium Produktionsrate entscheidend
- $\bullet\,$ zu viel $D\Rightarrow$ keine n für andere Elemente
- $\bullet\,$ zu wenig $D\Rightarrow D$ fehlt bei weiteren Fusionsschritten
- notwendige Bedingung:

$$n_B \langle \sigma \nu \rangle t \approx 1$$

- Gamow: Vorraussage der CMB-Temperatur
- $\langle \sigma v \rangle \approx 5 \cdot 10^{-20} \text{ cm}^3 \text{s}^{-1}$
- Baryonendichte

$$n_{B,BBN} \approx \frac{1}{\langle \sigma \nu \rangle \cdot 200 \text{ s}} \approx 10^{17} \text{ cm}^{-3}$$

 $n_{B,2005} \approx 10^7 \text{ cm}^{-3}$

 $\bullet \ n \propto R^{-3}$

$$T_{2005} = T_{BBN} \left(\frac{n_{B,2005}}{n_{B,BBN}} \right)^{\frac{1}{3}} \approx 10 \text{ K}$$

⁴He Produktionskette

$$\begin{array}{ccc} D+D & \rightarrow & ^3He+n \\ D+D & \rightarrow & ^3H+p \end{array}$$

$$^{3}H + D \rightarrow ^{4}He + n$$

$$^{3}He + D \rightarrow ^{4}He + p$$

$$D + D \rightarrow ^{4}He + \gamma$$

⁴He Produktion

- ⁴He hat hohe Bindungsenergie
- Nahezu alle n enden in ${}^4{\rm He}$
- Erwarteter Massenanteil von ⁴He

$$Y \approx \frac{2N_n}{N_n + N_p} = \frac{2 N_n / N_p}{N_n / N_p + 1} = \frac{2 \frac{1}{7}}{\frac{1}{7} + 1} = 0.25$$

2.3 Metalle

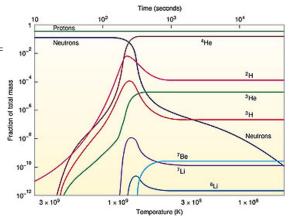
Isotopentafel

10								$^{17}{ m Ne}$	$^{18}{ m Ne}$
9								$^{16}{ m F}$	¹⁷ F
8						¹³ O	¹⁴ O	¹⁵ O	¹⁶ O
7						^{12}N	^{13}N	^{14}N	$^{15}{ m N}$
6				$^{9}\mathrm{C}$	¹⁰ C	¹¹ C	$^{12}\mathrm{C}$	$^{13}\mathrm{C}$	¹⁴ C
5				⁸ B	⁹ B	¹⁰ B	¹¹ B	$^{12}\mathrm{B}$	¹³ B
4			⁶ Be	⁷ Be	⁸ Be	⁹ Be	$^{10}\mathrm{Be}$	$^{11}\mathrm{Be}$	$^{12}\mathrm{Be}$
3			⁵ Li	⁶ Li	$^7{ m Li}$	⁸ Li	⁹ Li		
2		³ He	⁴ He	⁵ He	⁶ He		⁸ He		
1	$^{1}\mathrm{H}$	$^{2}\mathrm{H}$	$^{3}\mathrm{H}$						
	0	1	2	3	4	5	6	7	8

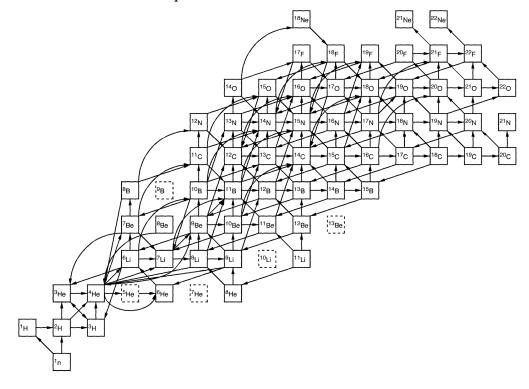
Blaue Isotope sind stabil.

Isotopentafel 2

10								$^{17}\mathrm{Ne}$	$^{18}{ m Ne}$
9								¹⁶ F	$^{17}\mathrm{F}$
8						¹³ O	¹⁴ O	¹⁵ O	¹⁶ O
7						$^{12}\mathrm{N}$	^{13}N	¹⁴ N	^{15}N
6				$^{9}\mathrm{C}$	¹⁰ C	¹¹ C	$^{12}\mathrm{C}$	¹³ C	¹⁴ C
5				⁸ B	⁹ B	¹⁰ B	¹¹ B	$^{12}\mathrm{B}$	$^{13}\mathrm{B}$
4			⁶ Be	⁷ Be	⁸ Be	⁹ Be	$^{10}\mathrm{Be}$	$^{11}\mathrm{Be}$	$^{12}\mathrm{Be}$
3			$^5{ m Li}$	$^6\mathrm{Li}$	$^7{ m Li}$	⁸ Li	⁹ Li		
2		³ He	⁴ He	⁵ He	⁶ He		⁸ He		
1	$^{1}\mathrm{H}$	$^{2}\mathrm{H}$	³ H						·
	0	1	2	3	4	5	6	7	8

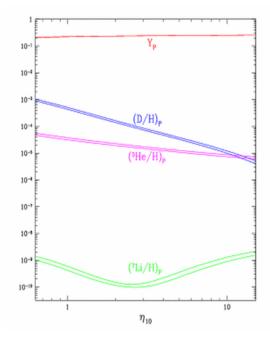

Die grünen Isotope sind bereits durch Fusionsprozesse entstanden. Die rot gekennzeichneten sind instabil.

Metallsynthese


- Seltene Partner ³H, ³He notwendig

$$^{3}H + ^{4}He \rightarrow ^{7}Li + \gamma$$

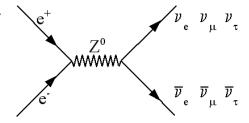
$$^{3}He + ^{4}He \rightarrow ^{7}Be + \gamma$$


Die Wirklichkeit sieht komplizierter aus

2.4 Parameter

Baryon
endichte η

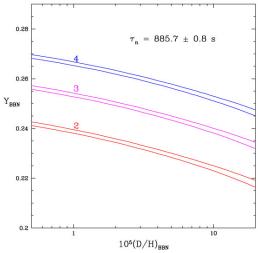
- Mehr Photonen, mehr Photodisentegration
- \bullet je größer $\eta,$ desto weniger Deuterium
- Y relativ unabhängig von η , da hohe Bindungsenergie


3 Neutrinoflavours

3.1 CERN

\mathbf{Z}_0 Boson

- Austauschteilchen der schwachen Wechselwirkung
- keine elektrische Ladung
- Spin 1
- \bullet Masse 91 GeV



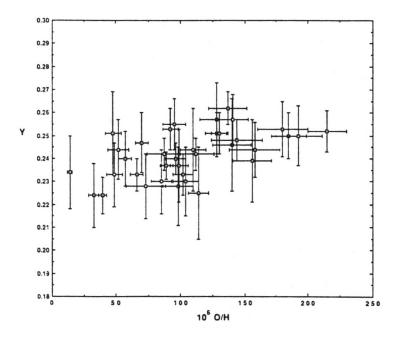
- CERN
- Large Electron Positron Collider
- $N_{\nu} = 2.99 \pm 0.01$

3.2 BBN

Neutrino Abhängigkeit

- \bullet Verhältnis N_n/N_p abhängig von der Anzahl der leichten Neutrinosflavours
- $H \propto \rho^{1/2} \cong (\rho_{\gamma} + \rho_e + \rho_{\nu})^{1/2}$
- früheres Ausfrieren von N_n/N_p
- $\bullet\,$ Temperatur höher \to Verhältnis höher

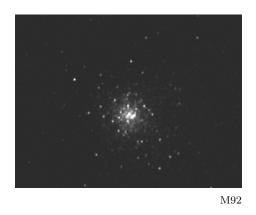
4 Beobachtungen

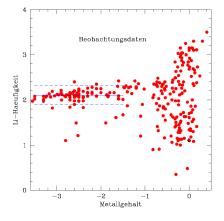

4.1 ${}^{4}\text{He}$

- Produkt der Kernfusion in Sternen
- Suche nach metallfreien Gebieten
- $\bullet\,$ z.B.: extragalaktische HII-Regionen

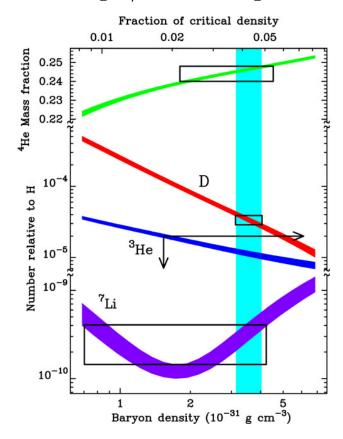
Orion-Nebel

\bullet Z-Korrelation




4.2 Deuterium

- Suche nach metallarmen Gebieten
- $\bullet~D$ wird in Sternen komplett verbrannt
- $\bullet\,$ Messung ist Untergrenze
- Ergebnisse D/H: Im interstalleren Medium $1.8\cdot 10^{-5}$, in Meteoriten: $2.5\cdot 10^{-5}$
- $\bullet\,$ Messungen inkonsistent


4.3 ^{7}Li

- ⁷Li wird in Sternen erzeugt/vernichtet
- $\bullet\,$ komplizierte Prozesse
- Suche nach alten Sternen in Galaxis

5 Vergleich Rechnungen/Beobachtungen

6 Literatur

- [1] THE WHOLE WORLD. Wikipedia. http://wikipedia.org.
- [2] NORMAN K. GLENDENNING. After The Beginning: A Cosmic Journey Through Space And Time.
 Imperial College Press, 2004.
- [3] DAVID N. SCHRAMM. Big Bang Nucleosynthesis: The Standard Model and Alternatives. Physica Scripta. Vol. T36, 22-29,1991
- [4] Walker, Steigman, Schramm, Olive, Kang. Primordial Nucleosynthesis Redux. The Astrophysical Journal, 376:51-69, 1991.
- [5] Christlieb, Besell, Beers & Others. A stellar relic from the early Milky Way. Nature Vol. 419, 2002.
- [6] JÖRN WILMS. Observational Cosmology. http://astro.uni-tuebingen.de/~wilms/teach/.
- [7] ACHMIS WEISS. Elementsynthese im Urknall. http://www.mpa-garching.mpg.de/~weiss/.
- [8] NICHOLAS M. SHORT. The Remote Sensing Tutorial. http://rst.gsfc.nasa.gov/.
- [9] CHRISTOPHE BALLAND. Primordial Nucleosynthesis. http://aether.lbl.gov/WWW/tour/elements/early/.
- [10] Chris Heilman. The Isotopes. http://chemlab.pc.maricopa.edu/periodic/isotopes.html.